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Abstract: Robots need both visual and contact sensing to effectively estimate1

the state of their environment. Camera RGBD data provides rich information of2

the objects surrounding the robot, and shape priors can help correct noise and3

fill in gaps and occluded regions. However, when the robot senses unexpected4

contact, the estimate should be updated to explain the contact. To address this5

need, we propose CLASP: Constrained Latent Shape Projection. This approach6

consists of a shape completion network that generates a prior from RGBD data7

and a procedure to generate shapes consistent with both the network prior and8

robot contact observations. We find CLASP consistently decreases the Chamfer9

Distance between the predicted and ground truth scenes, while other approaches10

do not benefit from contact information.11

1 Introduction12

You look into a cabinet and see a box of crackers. You reach in and attempt to grab the box from13

the side, but your fingers hit something. Perhaps this box is larger than you thought? Your mental14

model of the box updates, you try a wider grasp, and you successfully retrieve your snack. Robots are15

currently not so adept. While they can estimate the pose of known shapes [1] or estimate parameters16

of objects [2], they cannot yet fuse this visual and contact information to draw from the wide range17

of shape priors in the world. A robot could try to learn its next action directly from vision and force18

feedback instead [3], but this approach lacks the logic to generalize to scenarios not seen in training.19

We propose a method that allows robots to mimic the process of updating object shape from contact20

information. A shape completion neural network first generates beliefs over possible object shapes21

based on visual RGBD data. The belief updates the object shape to be consistent with contact22

information gathered by a robot moving in the scene. We make the realistic assumption that the23

RGBD camera perceiving the scene suffers from sensor noise and occlusion. We assume the robot24

can sense if it collides with an object, but not where the contact was made (i.e., no sensorized skin).25

Many of the “cobot” platforms available today utilize this contact model to detect collision and stop26

before harming a person.27

Formally, this type of contact creates a contact manifold, a thin space of shapes with a boundary28

bordering the robot. Past work has projected shapes onto the contact manifold in object pose space29

[4] and robot configuration space [1], but both require known shape geometry. Our objective is to30

update the unknown shape geometry to satisfy contact constraints. Returning to the cracker box31

example, the robot will be unsure if the contact occurred at the top finger, the bottom finger, or32

perhaps the back of the hand or the elbow. Filling in all possible contact points would lead to absurd33

scenes with robot shells protruding from the cracker box. However, ignoring this contact information34

leaves the robot with the original belief of the thinner cracker box and no explanation of why the35

attempted grasp failed. Our shape completion network generates a prior in latent shape space which36

can be decoded into shapes in workspace; however, shapes generated directly from this latent prior37

are unlikely to satisfy contact constraints.38

Our key insight is that latent samples from our neural network can be projected onto the contact39

manifold in the latent shape space using iterative gradient descent, creating shapes both likely under40
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Figure 1: A visual RGBD view of objects
leave ambiguity final shape due to sensor
noise and occlusion, which we store as a
set of sampled scenes in a particle filter.
Contact information (pink) reduces ambi-
guity, and using CLASP the particles con-
verge to the true shape.

Figure 2: CLASP Architecture
Top: Shapes sampled from RGBD using PSSNet [5].
Middle Right: A robot motion detects free space (light
blue) and a collision set (pink).
Middle Left: Latent samples are projected to satisfy
contacts (green). Ovals depict the latent prior.
Bottom: Final samples satisfy the contact constraints.

the visual prior and consistent with the contact information. We further expect these projected shapes41

to be closer to ground truth than direct samples not considering contact.42

We accomplish this with our proposed Constrained LAtent Shape Projection (CLASP), which stores43

a belief over shapes in a particle filter. Each particle represents a collection of latent object shapes44

which can be decoded into a scene. Every new robot measurement of contact and freespace triggers45

an update on all particles. During each particle update, gradient steps are taken to increase the46

occupancy likelihood of the most likely point(s) explaining the contact(s), decrease the occupancy47

likelihood of the free points, and increase the latent likelihood under the shape prior.48

We test this method both in simulation and on a live robot by constructing scenes of objects on a49

tabletop, generating robot motions that generate freespace and contact observations (Fig. 1), updat-50

ing the belief using CLASP as well as baselines, and comparing the set of sampled shapes to the51

ground truth scene. We find CLASP outperforms both ablations of CLASP, as well as the approaches52

of Rejection Sampling and directly updating the input to the shape completion network. We also53

find that CLASP produces more accurate scenes than a VAE GAN shape completion network.54

2 Related Work55

Shape Completion from Vision: The goal of Shape Completion is to predict a full shape from a56

single partial input. Recently, neural networks have become a popular method of shape completion.57

A common network architecture learns an encoder to a feature space followed by a decoder to the58

shape output [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Scene Completion networks are trained59

on larger spatial volumes of occupied points and use similar architectures with adaptations to join60

information from multiple scales [18]. While most methods predict the single best estimated shape,61

we build off work that uses a variational autoencoder architecture to produce plausible and diverse62

shapes [5]. We draw from the vast work on shape and scene completion and contribute a method63

that improves scene estimates using contact information from a robot.64

Shape Completion from Touch: In different works, “touch” can refer to a single known contact65

point, a contact configuration, force-torque measurements, or a rich tactile sensor. Work using the66

definition of contact point or contact configuration typically uses touch to reduce the version space67

of shape possibilities [19], but such approaches cannot tractably capture the diversity of all shapes.68
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Alternatively, some situations model known shapes with unknown poses [2]. Both classical Iterative69

Closest Point [20, 21] and neural networks [22, 23, 24] have been used to predict valid poses. To70

generate samples consistent with contact information, the Implicit Manifold Particle Filter projects71

sampled poses onto the contact manifold using an iterative approach [4]. Analogously, we project72

sampled particles onto the contact manifold in the latent shape space of our neural network.73

Touch can also refer to the rich tactile sensors such as GelSight [25] or soft-bubble grippers [26],74

with input more analogous to images. Tactile patches can be directly mapped to visual features [27].75

Alternatively, neural networks have used these sensors for material classification [28] and grasped76

pose estimation [29]. We do not assume our contact sensing has such rich information.77

Combining Vision and Touch: A neural network can combine vision and touch (force + torque78

[3], or GelSight [30]) using separate encoders to a latent space for each sensing modality alongside a79

decoder to a variety of spaces. We considered a similar encoder structure with a decoder to produce80

completed shapes, but this would require a large dataset of (Shapes × Contact + Freespace) mea-81

surements and the resulting network would be only applicable to the robot used for training. The loss82

of a neural network can be tweaked during training to bias towards priors similar to contact, such as83

connectivity and stability [31]. A neural network can output a downstream objective, such as grasp84

success probability, instead of shape reconstruction, and thus may be successful for a diverse array85

of objects where accurate reconstruction is not available [32]. Insteaed of a neural network, surface86

reconstruction has be done using a Gaussian Proccess (GP) prior fit to tactile measurements [33, 34].87

Our method is most similar to the work of Wang et al. [35], which uses gradient descent on the88

latent space of a shape completion network to enforce touch constraints. Where that work uses a89

high-resolution GelSight tactile sensor to refine shape details previously reconstructed from vision,90

our work focuses on ambiguous shapes (e.g. a box with unknown depth, or novel shapes not in the91

training data) and the lower information measurement of contact detection. We accomplish much92

larger shape updates by using a diverse set of predictions and a novel projection loss function.93

3 Problem Formulation94

Consider a robot R observing a static scene composed of specific objects oj sampled from some95

distribution of objects O. The objects divide the workspace into occupied space Wocc and free96

spaceWfree = W \Wocc The robot has access to a training subset of O beforehand, but does not97

know the specific objects oj in the current scene.98

The robot observes the scene with two distinct sensing modalities. In the visual modality, the robot99

views the scene from a stationary RGBD camera receiving color depth images Im. Due to sensor100

noise and occlusion these depth images offer an incomplete and noisy measurement on the full101

region of Wocc occupied by the obstacles. From the camera image we assume the scene can be102

segmented into distinct objects from O.103

For the tactile modality, consider a robot that is able to sense if it has made contact with any object,104

but not where along the robot surface the contact was made. We assume the contact does not move105

the objects. For a configuration in configuration space q ∈ C, let R(q) ⊂ W denote the region of106

workspace occupied by the robot. A robot that has visited configurations {q1, q2, ...} = Qfree ⊂ C107

without observing contact can carve out regions of known free space:108 ⋃
q∈Qfree

R(q) =Wknown free ⊂ Wfree (1)

For each configuration qcontact ∈ Qcontact where contact is observed, there must be at least one109

object point in collision with the robot (and not in known freespace).110

∀qcontact ∈ Qcontact ∃ pcontact ∈
(
R(qcontact) \Wknown free

)
: pcontact ∈ Wocc (2)

Using existing nomenclature, each such region is called a Collision Hypothesis Set (CHS) [36].111

Our objective is to model the conditional occupancy p(Wocc|O, Im,Qfree, Qcontact). Specifically,112

we desire a stochastic function g(O, Im,Qfree, Qcontact) which generates sampleWocc as similar113

as possible to the true conditional distribution. Since the true conditional distribution is unknown,114

in practice we seek to minimize the distance of drawn samples to the ground truth scene.115
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4 Method116

Our approach is to use a particle filter storing a collection of latent shapes. We first segment the117

scene into distinct objects, then use an existing shape completion neural network to draw latent118

shape samples ψj for each object from p(ψj |O, Im), initializing the particle filter. Each particle119

can be decoded into the objects in a scene, thus the collection of particles represents the belief120

p(Wocc|O, Im). We propose Constrained LAtent Shape Projection (CLASP) as the measurement121

update, projecting these samples onto the constraints imposed by Qfree and Qcontact. Our method122

is shown in Fig. 2, where the trapezoids fenc and fdec are the encoders and decoders of PSSNet [5].123

4.1 Initial Belief124

The RGBD camera images are passed to a segmentation algorithm, which yields distinct pixel re-125

gions in the image corresponding to different objects oj . For each object oj the corresponding126

portion of the depth image is converted first to a point cloud, then voxelgrids of known-occupied127

and known-free space centered around the visible object points with a transform Tj mapping the128

voxelgrid to the workspace coordinates.129

For each object oj we use the Plausible Shape Sampling Network (PSSNet) [5] f to generate possible130

shape completions. PSSNet is structured as a variational autoencoder. An encoder fenc maps the131

known-free and known-occupied voxelgrids to a mean and variance in latent space. A latent vector132

ψ can be sampled and passed to the decoder fdec, which outputs a probability of occupancy for each133

voxel. Thresholding (e.g. p > 0.5 for each voxel) yields a completed shape.134

An object oj that is representable by f can be stored compactly as ψj such that fdec(ψj) = oj . The135

transform Tj maps the completed shape into the workspace frame. A world is composed of static136

objects {o1, o2, ...} ∈ O. A particle φ stores a specific world as a sequence of latent-space vectors137

{ψ1, ψ2, ...}. We sample worlds conditioned on only the depth-image observation by independently138

sampling latent vectors of objects. The initial belief is a set of particles {φ1, φ2, ...} ∈ Φ generated139

from the information from the depth camera before any robot motion.140

4.2 Projecting a single object141

Sampling particles using only camera information may yield worlds that are inconsistent with the142

robot contact information. For example, PSSNet may predict objects that extend far into occluded143

space that intersect regions the robot has moved through. Alternatively, PSSNet may predict objects144

that do not extend into occluded space, and so the robot may observe contact with no object to145

explain the collision. Predicting shapes from vision and robot contact in a single pass would require146

a dataset specific to each robot and a specific set of motions.147

To resolve these inconsistencies, sampled particles are projected onto the constraints in the latent148

space of the shape completion network, shown in Fig. 2. For sample i of object j, ψij induces a149

workspace occupancy. Our constraints lie in the workspace, but we wish to project the latent space150

vector. Therefore, the projection is accomplished by optimizing a loss via gradient updates on ψij151

while holding fdec fixed, mirroring the process of training a neural network but optimizing the input152

instead of the network weights. Consider the unthresholded voxelgrid with values between 0 and 1153

produced by the decoder: fdec(ψij) = W i
j .154

We optimize the loss: Lall = Lfree + Locc + Lprior155

The first term Lfree penalizes all voxels predicted above a threshold δ that are known to be free.156

Lfree =
∑
x,y,z

{
max(W i

j (x, y, z)− δ, 0) Wknown free(x, y, z) = 1

0 otherwise
(3)

The second term Locc penalizes unexplained contact. Each contact qcontact must be caused by some157

object s.t. R(qcontact) ∩ Wocc 6= ∅, however it is not obvious which object is responsible for the158

contact, or which voxel of the object contacted the robot. During optimization we consider a specific159

assignment of Qjcontact to object oj . We define the assignment process in Section 4.3. Because a160

single occupied voxel is enough to explain a contact, at each iteration the loss is optimized based on161
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the maximum prediction of occupancy overlapping with the collision hypothesis set.162

Locc =
∑

q∈Qj
contact

1−max
(
R(q) ·W i

j

)
(4)

The final termLprior penalizes deviation ofψ from the original distribution predicted by the encoder.163

Without this constraint, ψ can deviate arbitrarily, losing all dependence on the depth image and164

even leaving the training domain of fdec. This would produce completions that no longer look like165

objects. Lprior is weighted by α to maintain a similar magnitude of gradients to Lfree and Locc.166

Lprior = −α log
(
P (ψij |fenc(Im))

)
(5)

Sampling the occupancy for a specific object oj given Im,Qfree and Qjcontact is thus accomplished167

by sampling a ψj and optimizing until the constraints are satisfied. Projection can fail if an iteration168

limit, set to 100 steps, is reached without satisfying the constraints. For practical efficiency this169

failure can sometimes be detected early when gradient updates no longer change the loss and the170

constraints are not satisfied. We use Adam [37] for optimization with a learning rate of 0.01.171

4.3 Multi-object completion172

CLASP stores an assignment of each qcontact to a particular object oj for each full-scene particle173

i. When a measurement contains a new contact qcontact, it is assigned to a specific object for each174

sampled particle i as follows. First, the output of our shape completer is a finite-sized voxelgrid,175

typically smaller than the full scene. The new qcontact cannot be assigned to any object j where176

R(qcontact) lies entirely outside the output region of the decoder fdec(ψj). Next, for each remaining177

j, a projection is attempted for each ψij to satisfy the new qcontact. If all attempts fail, we assume178

this new qcontact was not caused by object j. For each full-scene particle i, a specific assignment of179

qcontact is randomly and uniformly selected from the remaining objects j that could possibly explain180

the contact.181

5 Experiments182

We evaluated scenarios of different objects to determine if CLASP improves the estimate of the183

scene using robot contact information. We tested ablations of CLASP to evaluate the importance184

of the latent prior and constraint satisfaction. We also tested alternative approaches to CLASP that185

did not rely on projection. Finally, we compared CLASP on two different network architectures and186

trained on multiple datasets. We trained separate instances of PSSNet [5] on Axis-Aligned Boxes187

(AAB), YCB [38], and ShapeNet mugs [39] (training details in Section A.1).188

5.1 Robot Contacts189

Simulation: To generate contact measurements we moved the right arm of a robot composed of two190

Kuka iiwa arms with Robotiq 3-finger grippers. We generated scenes by manually placing simulated191

objects from AAB, YCB, or ShapeNet on a virtual table at about camera height. The known voxels192

were passed to our trained PSSNet to generate a set of possible completions.193

We generated robot motions to gather information by moving near and sometimes contacting the194

objects using the procedure described in the appendix A.2. The first motion typically sweeps known195

free space rather than making contact. The second or third motion intentionally makes contact with196

the object.197

Live Robot: The physical kinematics of our robot matched the simulated robot. A Kinect depth198

camera mounted at the “head” position generated the RGBD images. A calibrated motion capture199

system provided transforms between the Kinect and robot frames. We segmented the RGB image200

using the CSAIL semantic-segmentation-pytorch library [40] which we retrained on YCB objects.201

Each segmentation was converted into a voxelgrid and fed to PSSNet as in simulation to generate202

sample worlds. The same procedure was used to generate robot motions as in simulation.203
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Figure 3: Boxplots showing the Chamfer Distance from sampled particles to ground truth. The
mean, middle quartiles (boxed colored region), and outer quartiles excluding outliers are shown.
Rejection Sampling and VAE GAN occasionally produced no valid shapes, in which case no box is
displayed.

Figure 4: Boxplot results for the multiobject
scene. PSSNET + CLASP: NO CONTACT DIS-
AMBIGUATION fails to project any samples for
observations 4 and beyond, so there is not cor-
responding box.

Figure 5: The Deep Cheezit (left), Mug (Mid-
dle), Live Cheezit and Live Pitcher (Right)
scenes. The occupied (black) and known free
(not shown) voxels from vision with contact
(transparent red) and robot free (not shown)
voxels are all used by CLASP to generate com-
pleted shapes (green).
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On the live robot, contact was determined at each configuration by checking if the measured external204

torque exceeded a threshold of 2Nm per joint. This threshold was large enough to avoid generating205

false positives while remaining sensitive enough to detect contact with secured objects.206

5.2 Scenes207

Figure 6: The multiobject scene with the YCB
Cheezit box and Drill on a table (not shown) just
before the first contact.

We tested four scenes in simulation and two on208

the live robot. Each scene consisted of a single209

object secured to the table in front of the robot.210

We also tested a scene of multiple YCB objects211

(Fig. 6). Contacts occurred with occluded sec-212

tions of the objects, with examples shown in213

Fig. 5. In both simulation and the live robot,214

table occupancy was not considered when eval-215

uating the quality of the completions.216

Simulated Scenes: The first pair of scenarios217

used a single YCB Cheezit box (Shallow) and218

a stack of three Cheezit boxes (Deep). These219

setups generated similar depth images but dif-220

ferent ground truth shapes. Both used net-221

works trained on the AAB dataset. The Simu-222

lated Pitcher from YCB was positioned with the223

handle occluded from view and used networks224

trained on the full YCB dataset. The Simulated225

Mug from ShapeNet also had the handle oc-226

cluded from view and used networks trained on all mugs in ShapeNet. The handles on these objects227

were localized through contact.228

Live Scenes: The Live Cheezit also consisted of a stack of three boxes, and again the Live YCB229

Pitcher had the handle occluded. Both scenes used networks trained on the full YCB dataset. The230

Cheezit boxes were attached together and the pitcher was taped to prevent motion during contact.231

Simulated objects were manually aligned to the live scene to approximate the ground truth of live232

objects and were used for evaluation.233

5.3 Baselines234

We compared our proposed method to the following alternatives. DIRECT EDIT directly adds or235

removes voxels to satisfy the contact information. REJECTION SAMPLING samples latent space236

vectors from the distribution predicted by the encoder, then decoded these into 3D objects and237

rejected any samples not satisfying the contact or free space constraints. SOFT REJECTION SAM-238

PLING selects and then Directly Edits the least violating samples in the cases where all samples are239

rejected. For OOD (Direct Out-Of-Distribution Prediction), we combined the visual known free and240

occupied voxels with the contact known free and occupied voxels as input to PSSNet. While other241

methods did not have access to the true contact point, we allowed this method this advantage and242

added the true contact point directly to the known occupied voxels from the depth image. Finally,243

while other approaches used the PSSNet shape completion network, we tested using a VAE GAN244

[17] network. This network tends to produce better average but less diverse samples. Section A.3245

describes these baselines in more detail.246

We also tested ablations of our method. CLASP: IGNORE PRIOR tested removing the loss term247

Lprior. CLASP: ACCEPT FAILED PROJECTIONS tested accepting all projections, even those that248

do not satisfy the contact constraints. To test our contact assignment in the multi-object case (Sec-249

tion 4.3), CLASP: NO CONTACT DISAMBIGUATION determined if a projection of latent ψj could250

satisfy each new qcontact as in CLASP, then assigned each qcontact to all feasible objects j. This251

resulted in scenes explaining a single qcontact with multiple objects.252

100 particles were sampled in each method, with the threshold of Lfree set at δ = 0.4 and the253

weighting of Lprior set at α = 0.01.254
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5.4 Results255

Single-object scenes were tested on all baselines and ablations using PSSNet trained with the ap-256

propriate dataset. Fig. 3 compares the Chamfer Distance (CD) [41] of each accepted sample to257

the ground truth for selected scenes. Plots for all scenes are shown in Section A.3. We consider a258

different analysis in Section A.4. We find that REJECTION SAMPLING often performs well during259

the first few observations with zero or one contact. However, REJECTION SAMPLING soon fails260

to return any valid samples with two or more contacts. We see that OOD produces completions261

that are typically much worse than the original completions from only vision. The initial estimate262

(observation 0) from VAE GAN are hit-or-miss. All networks saw the YCB Pitcher during training,263

and VAE GAN recalls the pitcher more accurately than PSSNet during testing to the point where264

contacts are unnecessary. However, the recall of VAE GAN in the other ambiguous scenarios is265

worse than PSSNet and projection to the contact constraints often fails, leaving no sampled shapes.266

The results justify our choice of PSSNet over VAE GAN for CLASP, as VAE GAN is unable to267

sufficiently adjust to the contact information.268

Considering ablations of CLASP, ACCEPT FAILED PROJECTIONS performed as well initially (when269

no projections fail) and significantly worse as the number of observations increases. Ignoring the la-270

tent prior during projection also performs worse and occasionally produces shapes that qualitatively271

look less like objects compared to completions from other methods.272

Across all scenes, CLASP performed similarly to the best of all other methods with 0 or 1 contacts273

and the best with multiple contacts. CLASP successfully used the robot contact information in all274

scenarios to reduce the CD between the predicted and ground truth shapes in all scenarios. Robot275

measurements with a contact typically caused a larger reduction in CD than measurements with only276

freespace information. Numerically, the CD reduced most in the Cheezit scenarios, with a reduction277

of the mean from 0.5cm to 0.1cm for the Shallow and from 0.14cm to 0.08cm for the Deep. The278

CD reduction in the pitcher and mug scenarios was significantly smaller, as the general shape of279

the pitcher and mug could be predicted from the image. The prediction of the occluded handle280

was improved with contact. The trend of improvement in the live scenes matched the simulation.281

However, the numeric error of the live scenes was much larger, perhaps caused by imperfect transfer282

of the learned shape completer from training in simulation to prediction on live Kinect data as well283

as imperfect alignment of the robot frame to the Kinect frame.284

In the multi-object scene (Fig. 4) the VAE GAN method achieves a better completion from the285

RGBD data, but our proposed method produces better samples after 2 contacts. Our proposed con-286

tact assignment (Section 4.3) outperforms naively satisfying the contacts whenever possible.287

6 Discussion and Conclusion288

While we model CLASP using a particle filter and would like to have the Bayesian estimate of the289

scene given all observations, we acknowledge many non-Bayesian approximations. Particle filters290

approximate Bayes filters, but the 100 particles we sample may not be a sufficient coverage of the291

latent shape space. CLASP projects samples, which does not preserve Bayesian estimates.292

While our shape network uses voxelgrids, implicit representations have recently become popular293

and offer advantages worth considering. Currently shape completion networks produce the most294

visually pleasing results when trained on a single object, visually decent results when trained on a295

single class of objects, and poor results when trained on large diverse shape datasets. In order to296

be practically applicable to robots, shape completion must handle a wide variety of objects. Shape297

completion is rarely the end goal, but rather a tool robots can use to aid in tasks. Choices of correct298

metrics and refinements to CLASP ultimately depend on the specific downstream application.299

We demonstrated a method for estimating shape completions initialized with purely RGBD visual300

data, then updated from observations of a robot arm moving through unknown regions and sensing301

contact. We stored the belief of the scene as a particle filter of latent vectors from a shape com-302

pletion network and used CLASP to enforce shape consistency with the robot observations. Most303

importantly, we showed that CLASP improves the estimate of object shape using these contact ob-304

servations. Our results further showed that CLASP performs better than ablations of CLASP and305

alternative methods. We hope CLASP will be used within a larger robotics framework where rea-306

soning over environment uncertainty based on shape priors aids in accomplishing larger goals.307
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APPENDIX399

A Experiment Details400

A.1 Shape Network Training401

We generated 3 distinct datasets of voxelized objects with size 643 from random axis-aligned boxes402

(AAB), YCB objects [38], and ShapeNet mugs [39]. Boxes for AAB had width, depth, and height403

uniformly sampled with 2 to 41 voxels. For YCB and ShapeNet we generated ground truth voxel-404

grids centered on the object with different rotations using binvox [42, 43]. For YCB we applied all405

15 degree increment rotations about both the vertical and a horizontal axis. For Shapenet we applied406

all 5 degree increment rotations about the vertical axis.407

During each epoch of training, each voxelgrid was augmented with translations sampled uniformly408

from -10 to 10 voxels in each direction. The 2.5D “known occupied” and “known free” voxelgrids409

were generated assuming a sensor looking down the x-direction. Sensor noise was simulated by410

sampling IDD 0-mean 2cm-std. deviation gaussian random noise in a depth image of 16x16, scaling411

that depth image to 64x64 using bilinear interpolation, then applying that noise to the x-direction of412

the known occupied and free voxelgrids.413

We trained separate instances of PSSNet [5] on AAB, YCB, and Shapenet mugs, training for at least414

100 epochs (∼1 day), and used the iteration with minimal loss for experiments.415

A.2 Robot Motion Generation416

The following procedure was used to generate the robot motion which in turn generated the contact417

and freespace observations. The robot began each trial with a roadmap: a graph of nodes corre-418

sponding to configurations, and edges of robot motions connecting the nodes. Each scene contained419

a Goal Generator function, which mapped the completed objects to a goal Task-Space Region (TSR)420

[44]. Using 10 sampled worlds, there were a corresponding 10 separate TSRs. In the scene above,421

the Goal Generator took the mean of the completed object points, and generated a TSR centered422

10cm back in the occluded region.423

At each iteration if the robot did not currently satisfy any TSR, approximately 80 configurations424

were sampled from each TSR and added to the roadmap, and the robot would attempt to traverse the425

roadmap to the closest configuration in a TSR. If the robot satisfied all TSRs the task was considered426

complete.427

If instead the robot satisfied at least one but not all TSRs, the robot took an information gathering428

action. For each outgoing edge of the robot’s node on the roadmap, the Information Gain (IG)429

was calculated from the existing particles using the method in [45]. The robot took the action with430

highest information gain, which often (intentionally) contacted an object. The belief was updated431

and the next iteration began.432

Detecting contact in simulation: The voxelized robot was computed using GpuVoxels [46] with433

a much larger 2563 voxelgrid with 1cm voxel side lengths. This robot voxelgrid was converted434

to an occupied point cloud, then transformed to the object frame, and converted into a voxelgrid435

matching the size and position of the depth image voxelgrid. Contact was determined by checking436

for overlap between the robot and object voxelgrid. For each configuration visited not in contact,437

the voxelized robot was added to the known freespace. Each configuration in contact generated a438

Collision Hypothesis Set, added to Qcontact.439

A.3 Baselines and All Results440

Here we describe several baselines in more details. Figures 7 and 8 show all ablations and baselines441

for all scenes described in Section 5.442

DIRECT EDIT: Perhaps the simplest method, in this baseline we apply the contact information443

directly to the voxelgrid. We sample latent vectors directly from the visual prior and decode into444

voxelgrid shapes as in other methods. At each measurement the known-free voxels from contact445

information are directly removed from predicted voxelgrids. In our problem formulation the true446
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Figure 7: Ablation boxplots showing the Chamfer Distance from sampled particles to ground truth.
The mean, middle quartiles (boxed colored region), and outer quartiles excluding outliers are shown.
.
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Figure 8: Baseline boxplots showing the Chamfer Distance from sampled particles to ground truth.
The mean, middle quartiles (boxed colored region), and outer quartiles excluding outliers are shown.
Rejection Sampling and VAE GAN occasionally produced no valid shapes, in which case no box is
displayed.
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contact voxels are not known, however for this baseline we break that assumption and use the true447

object voxels that came in contact with the robot. These contacted voxels are added directly to the448

predicted shapes.449

SOFT REJECTION SAMPLING: Rejection Sampling samples latent vectors from the distribution450

predicted by the encoder using purely visual data. To condition on the contact information, Rejec-451

tion Sampling simply discards all samples that do not satisfy the contact constraints. To overcome452

the limitation that after 1 or two contacts no samples are accepted, reviewers suggested this softer453

implementation. In the SOFT REJECTION SAMPLING baseline we perform rejection sampling, sav-454

ing rejected samples but marking them as invalid. If all samples are marked as invalid, we select455

all samples that violate the fewest number of constraints. This count includes each CHS without an456

occupied voxel, and each known-free voxel which the sample occupies. We then apply the DIRECT457

EDIT method on each selected sample to enforce that each sample satisfies all known constraints.458

OOD (Direct Out-Of-Distribution Prediction): Our neural network accepts known-free and459

known-occupied voxels as input. During training the known-free and known-occupied solely came460

from vision, however contact information provides the same type of known-occupied and known-461

free information. This baseline takes the union of the known-free voxels from vision and robot462

motion as the known-free input, and uses the union of known-occupied voxels from vision and con-463

tact as the known-occupied input. In our problem formulation the true contact voxels are not known,464

however for this baseline (as in DIRECT EDIT) we break that assumption and use the true object465

voxels that came in contact with the robot. This baseline was suggested by many colleagues in early466

discussions of the paper. It is perhaps not surprising that this baseline performs poorly, as the com-467

bined information from vision and contact is out of distribution from all data on which the network468

was trained.469

A.4 Likelihood Results470

We consider an alternative analysis of the experiment data presented in Section 5.4. Given that we471

model scenes by sampling shapes in a particle filter, we consider the likelihood of the ground truth472

scene given the particles. Since a particle filter models discrete samples, none of which will exactly473

match the ground truth, we apply a kernel to our particles in workspace. Specifically, we apply a474

non-normalized kernel based on the Chamfer Distance between two shapes s1, s2:475

k(s1, s2) =
1

CD(s1, s2)
(6)

The (non-normalized) likelihood of a particular scene occupancy s under the belief of n particles Φ476

is then477

p(s|Φ) =
∑
φ∈Φ

1

n
k(fdec(φ), s) (7)

where fdec(φ) decodes all latent shape vectors ψ ∈ φ into a scene.478

We plot the likelihood of the true scene in Fig. 9 and Fig. 10, and find similar trends as in Section 5.4.479

The magnitude of the likelihood is not meaningful, however the relatively likelihoods between the480

methods are. Initially methods perform similarly, except VAE GAN which is either better or worse481

than other methods. With contact and freespace observations, our proposed CLASP with PSSNet482

tends to increase the likelihood of the ground truth scene, while VAE GAN tends to decrease the483

likelihood.484
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Figure 9: Plots of likelihoods of CLASP and baselines under the particle filter belief and kernel
function.
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Figure 10: Likelihood of CLASP and baselines for the multiobject scene
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