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Abstract— Performing detailed work on objects requires
precise localization. Currently humans aid machines in local-
ization either by direct operation, or implicitly by designing a
sequence of actions a robot follows. Our approach to automate
localization is to reason over many potential actions, perform
the best information gathering action, and then use the mea-
surement obtained to update a non-Gaussian belief. We propose
a method for autonomous localization of objects with initial
6DOF uncertainty capable of reasoning about and performing
measurements with low uncertainty and arbitrary error models.
Surprisingly, common methods capable of modeling arbitrary
belief distributions perform poorly as measurement uncertainty
decreases, so we modify a particle filter to handle these accurate
measurements produced by tactile or laser sensors. We then
show how the expected information gain of the proposed
measurement can be calculated efficiently from these particles.
We present experiments, both in simulation and on hardware,
that show our method is both fast and accurate.

I. INTRODUCTION

In automated manufacturing it is critical that robots local-
ize to the parts they are working on before performing their
operations. With sufficiently consistent parts and a high rate
of production this localization can be accomplished though
external jigs forcing every part into the same configuration,
so that the robot is able to perform a task without sensing
the pose of the part. Many of these tasks have already been
automated. However when there is large variation in parts,
or when constructing dedicated jigs is cost-prohibitive for
low rates of production, a robot must use sensing to localize
each part.

In autonomous localization we seek to know the pose of an
object from measurements obtained from probing. We wish
to choose probing actions to locate parts efficiently, and thus
wish to avoid probing actions that provide little value. We
are finished when we are reasonably confident that the error
in the pose estimate is below some desired tolerance.

Rather than calculating a single best estimate of the pose,
we represent the uncertainty in knowledge by a probability
distribution. Estimating the probability distribution is impor-
tant both for choosing effective measurements and knowing
when we have localized sufficiently. For feasibility, this
probabilistic belief is represented numerically by a list of
points drawn from the true distribution called particles. A
measurement updates the belief using a particle filter [1].

However particle filters behave poorly both when the
dimensionallity of the system grows large and when mea-
surements become precise [2]. In the problems we consider
there is a large initial uncertainty in the six-dimensional
system, and we require measurements with low uncertainty
to achieve high tolerance performance. Updating the belief
after performing such a measurement will eliminate most

(a)

(b)

Fig. 1: (a): The robot performing a touch measurement
(b): The belief of the part location and measurement

particles, leaving a poor representation of the posterior. This
problem is called particle starvation.

This paper first presents a solution to particle starvation
during touch localization (section IV). We design a particle
filter with an alternate update procedure that is able to
combine accurate measurements with the prior. We then
tailor this update procedure to the specific measurement
process in our localization problem to further improve the
performance.

To minimize the time taken to localize the part, the
robot should choose informative measurement actions. To
achieve this we sample many actions and select the one with
the highest expected information gain. Fully predicting this
is also computationally expensive, thus previous methods
using this metric introduce delays during which the robot
pauses between measurements and yet still only samples
a small number of actions. Our approach involves a fast
approximation for information gain that takes advantage of
the discretized belief from the particle filter (section V). This



allows us to evaluate hundreds of potential measurement
actions in a few seconds.

We demonstrate our method both in simulation and on a
real robot (section VI). Figure 1 shows our robot equipped
with a touch probe, the belief distribution, and the expected
points of contact during the probing (red dots). Even with
relatively inaccurate sensors we are able to localize the 6
DOF of a part to within 2mm with an average of only 7
measurements.

II. RELATED WORK

Particle filters, touch measurements, and maximal infor-
mation gain measurement selection have all been used in
localization tasks. In particular the recent DARPA ARM-S
competition led to progress with robotic arms localizing and
grasping objects.

Since their introduction particle filters have been popular
due to their ease of implementation and ability to model
complex distributions, process models, and measurement
models [1]. However, as we will describe, for a measurement
with low uncertainty there exists only a thin manifold of
states consistent with that measurement, yielding a low
probability of any particle existing on that manifold, leading
to particle starvation [3].

To address this, Koval introduced the Manifold Particle
Filter, using different sampling methods depending on the
volume of the space consistent with a measurement [4], [2].
This allows a quick update of the belief when the contact
sensor is not in contact with the part, and only requires
addressing the harder thin manifold update problem when
contact is made. Koval used multiple methods when updating
from measurements when on this thin manifold, and shows
that rejection sampling requires the fewest restrictions on
prior knowledge of the environment, but naive rejection
sampling is time consuming. His efficient methods require
direct sampling from the contact manifold, which is not
feasibly for a complex part.

Petrovskaya focused on global localization of objects via
touch [5] and introduced the Series Scaling algorithm to
overcome particle starvation. The Series Scaling algorithm
adaptively alters the particle density depending on the com-
plexity of the posterior. Multiple passes through the measure-
ment data are used and the precision of the modeled belief
is scaled from low to high, avoiding unnecessarily precise
estimates in exceedingly unlikely regions of belief space.
This is complementary to our approach, and implementing
multiple passes on our methods could lead to a faster update
process.

Alternative approaches to modeling touch localization
adapt a Kalman Filter to model the belief distribution. A
Kalman filter requires a Gaussian belief of the estimated
state, which is inaccurate in touch localization. For exam-
ple, multi-modal distributions appear when it is ambiguous
whether a close edge or far edge was touched.

A Kalman filter also requires a linear measurement mod-
els, which does not exist for touch localization, so this too

must be approximated. The Extended Kalman Filter per-
forms first-order linear approximations of the measurement
model, but this diverges for pose estimation with large initial
error [6]. The Unscented Kalman Filter approximates the
measurement model through evaluation at many “sigma”
points chosen by tuning parameters. As the pose likelihood
given a measurement varies by many orders of magnitude
in different dimensions, these parameters are sensitive and
unreliable. Srivatsan constructs a linear measurement model
using two measurements and assuming the correspondence
between the probe tip and the touched point on the object [7].
However, this correspondence is unknown, and additional
effort is needed, otherwise approximating correspondence
(for example through Iterative Closest Point methods) can
lead to convergence on local, not global, minima.

Much of the recent work on touch measurements uses a
robotic hand with contact sensors. In these works evaluation
of both actual and simulated measurements required collision
checking between two meshes which is computationally
expensive.

Hebert et. al. use geometric (CAD) models of objects such
as screwdrivers and door handles as well as the geometric
model of their robotic arm to autonomously choose touch
actions that localize objects sufficiently to perform everyday
tasks, such as grasping and opening doors. Their algorithm
greedily selects the next best touch action from a list of
candidate actions to maximize information gain [8].

Javdani shows that selecting the next touch to maximize
information gain is submodular under assumptions of a static
object and an action cost independent of object and robot
state, explaining the effectiveness of the greedy approach [9].
This provides a sound theoretical basis for our approach.
Javdani demonstrates the computation of information gain
is time consuming and proposes an alternative method of
hypothesis pruning. Our formulation computes the expected
information gain about two orders of magnitude faster, and
thus we are able to evaluate many more potential measure-
ment actions and model the belief using more particles.

III. PROBLEM FORMULATION AND MODELS

The robot estimates the pose X of an object based on
a set of measurements Zt = {z1, ..., zt} made by probing
the object. We use a triangular mesh to describe the part
geometry and attach a frame to this mesh. The state X is
the SE(3) transformation from a fixed world frame to this
part frame. This is a 6-dimensional state stored as position
(x, y, z) and orientation angles (α, β, γ). We assume our
geometry is rigid, thus the state can be fully described as
the SE(3) configuration of a frame attached to the part. We
further assume that the part is fixed in space relative to a
world frame and that actions the robot takes do not perturb
the state. Thus our process model does not change the state.

A. Belief

At any time step we have a belief of the state bel(xt) =
p(xt|Zt). Measurements are a non-linear probabilistic func-
tion of the true state: zt ∼ p(zt|X). As in all Bayesian filters,



the belief bel(xt+1) is calculated recursively as follows 1:

bel(xt+1)← η p(zt|xt) bel(xt) (1)

with η as a normalization factor. Each new measurement
value triggers an update to the belief bel(x).

B. Sensors

We model a measurement technique common to industrial
robots: touch probing. A touch probe is a spherical tip
mounted to a rigid shaft connected to the end effector capable
of detecting contact. We make the assumption that every
probe measurement action will involve the probe tip moving
along a linear trajectory through space until contact is made,
at which point the robot will stop.

All the methods presented in the paper also apply to
a 1D laser range finder. This offers faster measurements
without requiring contact with the part. We implemented the
techniques presented in the paper on robots equipped with
both sensors and have observed similar results.

C. Measurement Model

A measurement is defined by a measurement action and a
measurement value: M = {A, z}. The measurement action
is chosen by the robot while the measurement value is the
probabilistic result of taking that action given the part state.

We define measurement actions by a start point Ap and
a vector Av both in R3. These define the line segment of
the motion of the center of the tip of the touch probe. The
measurement value z is the distance the start point travels
along the vector until contact is made. The point of contact
in R3 is then easily recoverable as Ap + z Av

||Av|| . Note that
this point may not lie on the surface of the part, as the probe
tip has width, the action is not perfectly followed by the
robot, and the sensor will add noise to the measured value.
For the robot arms and sensors used in manufacturing the
uncertainty added typically ranges from 0.1 to 1mm [10].

IV. MODELING PART UNCERTAINTY

Localization of an object requires a model of the belief
of the object’s state, and a method of updating the belief
given a measurement. We choose to model the belief of the
object state by a finite list of particles, P = {(xi ∈ SE(3))},
to accommodate both multimodal distributions and the non-
linear relationship between the object state and measurement
value. Both are present during localization of an object in
SE(3).

A. Problems with the standard particle filter

A common method of updating particles based on a
measurement is importance sampling [3]. In importance
sampling each particle is weighted by the probability of the
measurement conditioned on the state that particle represents.
This is usually followed by resampling, where particles are
redrawn from the set of weighted particles with probability

1The full update of a Bayesian filter also includes a process model. Our
assumption of a fixed part yields the static process model and this simpler
formulation

proportional to their weights. The effectiveness of importance
sampling relies on the existence of multiple particles consis-
tent with the measurement, such that inconsistent particles
will have low weights and be unlikely to be resampled, but
a sufficient number of particles will be resampled to model
the true belief of the state.

Importance sampling tends to break down in situations
with accurate measurements and low densities of particles.
This is because when a measurement is consistent with the
true prior belief yet no particles are consistent with the mea-
surement, a situation called particle starvation, resampling
will yield a set of particles that does not model the true
posterior belief. A more accurate sensor measurement is
consistent with a smaller volume of state space, thus a higher
density of particles is required. For higher dimensional state
spaces and more accurate sensors the number of particles
required becomes prohibitively computationally expensive.
This leads to the counter-intuitive result that particle filters
tend to perform worse as measurement accuracy increases
[2].

B. Rejection Sampling Method

An alternate approach is to use rejection sampling. Rejec-
tion sampling does not require a high density of particles to
avoid particle starvation and failure of rejection sampling is
far easier to notice and resolve. Most importantly, we can
increase the limits of state dimensionality and measurement
accuracy that can be handled efficiently.

Rejection sampling generates independent samples from
a density f by sampling from a different distribution g. A
constant M is determined such that f(x) ≤ Mg(x) ∀ x.
A sample x∗ drawn from g(x) is accepted with proba-
bility f(x∗)/Mg(x∗) and rejected otherwise. The process
is repeated until the desired number of samples has been
accepted. We wish to sample particles from the posterior
bel(xt+1) but cannot do so directly. Instead we sample from
our continuous prior belief bel(x) and possibly reject based
on the measurement.

Broad Particles: We first reconstruct the continuous prior
belief by broadening each of the particles. We apply a
Gaussian kernel to the particles, with the kernel covariance
proportional to the covariance of the particle states. This
reduces particle starvation, as even if no prior particle
is consistent with the measurement, the continuous belief
generated fills in the gaps between particles.

C. Fast Evaluation of Sampled States

States sampled from this continuous prior are then re-
jected if they are inconsistent with the measurement. While
the formulation of rejection sampling allows us to model
complicated measurement error, we implement a binary
measurement model. We reject all sampled particles where
the measured point is sufficiently far from all faces of the
object. We define “sufficiently far” as more than 3 standard
deviations of the sensor measurement noise. As a low uncer-
tainty measurement will accept only a thin manifold in state
space, the probability of sampling a particle consistent with



the measurement may be low, and a lot of sampling may be
required, therefore we desire the rejection process to be fast.

To reduce the computational cost per sampled state we use
discretized space, known as a distance field [11], to precom-
pute and cache the minimum unsigned distance Df (p) from
point p in voxelized space to the object surface ∂S ⊆ R3:

Df (p) = min
q∈R3

(||p− q||+ f(q)) (2)

f(q) =

{
0, if q ∈ ∂S
∞ otherwise. (3)

As the object is fixed during the localization process,
voxelization can be done for the entire piece based on the
given CAD mesh model in the precomputation step.

Voxelization: Voxelization is the key part to transform the
mesh model to axis-aligned discretized space, which can be
stored and accessed easily as a standard array. The array form
of the CAD model can greatly facilitate the computation of
the distance field, as described below. Each voxel is assumed
to be a cube in 3D space. A fast 3D Triangle-Box Overlap
method [12] is used to label the voxels that overlap the mesh
triangles of the object surface. The voxel map is then mapped
to a binary-valued 3D array f(q), where each value is either 0
or∞ depending on whether the corresponding voxel overlaps
the object surface.

Voxelized Distance Field: The computation of distance
field Df (p) takes the input of the computed binary array
f(q) (Eq. 3), and a linear-time algorithm for 3D distance
field construction [11] is then used. The resulting distance
field is also stored in an array for constant time access during
the evaluation of sampled states.

Fast Evaluation: Different configurations result in different
poses of the object in the workspace, which makes it difficult
to compute the distance field directly in the world frame.
Instead, the computation of the voxel map and distance field
is relative to the object frame, where the object is assumed
fixed during the entire localization. Each measurement Mt

in the workspace is then transformed into the part frame,
where the transform T (xt+1) comes from the pose of the
sampled state xt+1. Therefore, by transforming back to the
object frame, all measurements on this same object can share
the same distance field, where the minimal unsigned distance
distu(Mt, S) between each measurement Mt and the object
S(xt+1) can be obtained directly:

distu(Mt, S(xt+1)) = Df (T (xt+1)
−1Mt) (4)

The signed distance dist(Mt, S(xt)) between the probe
and the object can be obtained from the unsigned distance,
as shown in Eq. 5, by checking whether the voxel is inside
or outside of the object. For the manifold shape object, ray-
casting is applied from the corresponding voxel in a certain
direction: the voxel is inside of the object only if the number
of intersections between the ray and mesh is odd

dist(Mt, S(xt) =

{
distu(Mt, S(xt)− rp, if Mt /∈ S
−distu(Mt, S(xt)− rp, otherwise.

(5)

The unsigned distance dist(Mt, S) is always 0 in the
ideal case, however, when evaluating a sampled state, only
those that satisfy |dist(Mt, S)| > Td will be rejected, where
Td is the tolerance selected according to the measurement
uncertainty of the touch probe and the robot. If the distance
is within the tolerance, ray-casting is then applied to check
intersections from the start point Ap along the path vector
Av in order to determine whether the path is free of collision
with other parts of the object.

When the measurement is very accurate, in order to sample
enough particles from the prior belief, a large number of
states will get rejected, which makes the ray-casting for
all sampled states computationally expensive. Instead, early
rejection is applied using a greater distance distu(Mt, S)+rp
before the computation of signed distance.

D. Improvements on the Particle Filter
Adaptive Voxelization: When the workspace is large

enough, it will not be feasible to compute a distance trans-
form for the entire workspace while maintaining a suffi-
ciently small voxel size due to the huge memory require-
ments. Instead, the distance field for each measurement is
generated prior to the update. As the belief of the object’s
pose is represented as a distribution, the range of the distance
field DF for each measurement Mt is selected so that:

ξ <

∫
T (xt)−1Mt∈DF

bel(xt)dx (6)

The voxel size is adjusted accordingly while keeping the
number of voxels fixed. When there is large uncertainty
the voxels will become larger to improve the sample speed.
When the uncertainty is low the precision is increased.

Adaptive Bandwidth: The selection of the Gaussian kernel
bandwidth h is important during the sampling process. A
larger bandwidth is needed when the variance of bel(xt) is
large for a fixed number of particles; otherwise a smaller
bandwidth is preferred to avoid over-smoothing. Silvermans
rule of thumb estimator [13] is used to dynamically adjust
the bandwidth: h(t) = ( 4

(d+2)n )
1/(d+4)σ̂t, where σ̂t is the

standard deviation of the sampled states and number of
dimensions d = 6.

Adaptive Sample Size: The number of particles is de-
termined by Kullback-Leibler divergence (KL-divergence)
which measures the difference between the sample-based
maximum likelihood estimate p̂ and the true distribution p:

DKL(p̂, p) =
∑
x

p̂(x)log
p̂(x)

p(x)
. (7)

Suppose that the true distribution is given by a discrete
multinomial distribution with k different bins, it can be
shown that with probability 1− δ, the KL-divergence is less
than or equal to ε when the sample size n is given by [14]:

n =
1

2ε
χ2
k−1,1−δ (8)

≈ k − 1

2ε

(
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

)3

(9)
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Fig. 2: Comparison of the time and accuracy of the parti-
cle filter update step when using Adaptive Bandwidth and
Adaptive Sample Size

where χ2
k−1,1−δ is the upper 1−δ quantile of χ2-distribution

with k − 1 degrees of freedom, and z1−δ is the upper 1− δ
quantile of the normal distribution.

Therefore, the number of particles n can be adjusted
according to the number k of bins with support, as shown in
Eq. 4. The bins are implemented as a multidimensional grid
with fixed size in the configuration space. During sampling,
the number k of occupied bins is counted whenever the newly
sampled state falls into an empty bin. The current sample
size is counted and each increment of k will result in an
update of desired sample size n. When the actual number of
particles reaches the desired value or a predefined maximal
limit, whichever is smaller, the sampling process finishes.

Figure 2 shows the comparison between the particle filters
with different improvements that are mentioned above. The
simulation uses a mesh model with 39444 triangles. The
set of measurements used for each method is fixed and

predefined. The baseline method represents the particle filter
that only implements adaptive voxelization while using fixed
kernel bandwidth h = 0.0035 and fixed number of particles
(n = 500). Adaptive Bandwidth improves the convergence
accuracy significantly compared to the baseline method,
while Adaptive Sample Size generally leads to poorer con-
vergence with faster speed. The combined method applies all
of the improvements above. It can achieve both faster and
more accurate convergence compared to the other methods.

V. PREDICTING EFFECTIVE MEASUREMENT ACTION

Performing measurements is time-consuming, so it is
crucial to perform only measurements that greatly reduce
uncertainty. We select many candidate actions, evaluate
their effectiveness using the metric of expected Information
Gain, and perform only the best one. We make use of our
discretized belief and specific measurement formulation to
quickly calculate the expected information gain taking into
account arbitrary part and measurement uncertainty.

While measurements are valuable because they influence
our future belief, we avoid the expensive computation of
bel(xt+1) for every possible measurement value. Instead we
treat this as a decision problem over our discrete particle
states and ignore the continuous distribution the particles
represent.

A. Information Gain

The Information Gain of a discrete distribution due to a
probabilistic measurement is defined as the expected reduc-
tion of entropy.

IG(P|M) = H(P)−H(P|M) (10)

Where H(P) is the entropy of the particles and H(P|M) is
the entropy of the particles conditioned on the measurement.

The entropy of a discrete distribution of states depends
only on the probabilities of each state occurring.

H(P) = −
∑
i

wi logwi (11)

= log n (12)

where n is the number of particles. Equation 12 follows as
our particles are uniformly weighted: wi = 1

n . Note that the
entropy does not depend on the location of the particles in
the 6D pose space, and that a set of particles spread out can
have the same entropy as a tightly packed set. This counter-
intuitive definition is due to only considering the entropy of
the discrete distribution of particles where every particle is
distinct from every other particle, and ignoring continuous
belief which the particles represent.

To calculate the entropy of the particles conditioned on a
measurement action, we first discretize the possible measure-
ment values, transforming a continuous measurement into a
discrete measurement mj = (A, zj). The conditional entropy
of the as yet unknown measurement is then:

H(P|M) =
∑
j

p(mj) H(P|mj) (13)
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Fig. 3: Heat maps showing information gain

The term p(mj) is the probability that after performing
this measurement the discretized measurement value is zj .
The term H(P|mj) is the entropy of the particles once the
measurement is known to be mj . Once the measurement
value is known some particles may be eliminated entirely,
some may become less likely, and some may become more
likely. These now weighted particles will have a lower
entropy than the original set.

We visualize the information gain of our particles in Figure
3 by using the information gain for a grid of parallel rays
as the “temperature” in a heat map. Initially (a) probing into
the page is likely to miss the part, so information gain is low
for all these measurements and we instead probe sideways.
After this first measurement (b) the uncertainty is reduced,
and probing into the page is more likely to hit the part
and provide information. Once this second measurement is
performed (c), another measurement in the same place will
not provide more information.

The details of efficently calculating the terms in equation
13 are described below in section V-C. However we first
describe the measurement simulation in detail.

B. Measurement Simulation

We need a method of predicting the measurement value
obtained from a measurement action: p(mj). We again
choose to model the measurement uncertainty by a discrete
sampling of the continuous distribution. For a single mea-
surement action, and for each particle a sampling of measure-
ment values is drawn from the distribution of measurement
values that would be obtained if that particle was the true
state.

Our sensor measurement will indicate a distance z traveled
along the measurement action A until reaching the part. We
start by examining the distance from the start point along
the vector until the first intersection with the part. Though
a crude approximation of the true measurement value, the
benefit of this model is that given a measurement action and
part pose, the measurement value can be calculated as the
intersection of a ray and a triangular mesh. Due to their heavy
use in computer graphics, ray-mesh intersection algorithms
have been heavily optimized and can be computed in parallel.
We now describe refinements to this approximation while
maintaining the benefits of ray casting.

Measurement Width: While a ray is infinitely thin, the

touch probe’s spherical tip has a non-zero diameter, and thus
will cast a cylinder rather than a ray. The true value returned
by our sensor is the smallest distance until any contact
with the part. We approximate the measurement cylinder by
discrete uniformly spaced rays on the cylinder exterior, and
return the lowest ray-mesh intersection distance.

Measurement Error: Error is caused both by inaccurate
start positions and orientations due to robot positioning error,
as well as inaccuracies in the sensor. In the most extreme
cases error may cause a measurement to move from barely
hitting an edge to completely missing the part. Thus it is
clear neither adding a constant error term, nor a dependent
Gaussian error will accurately model the error.

Instead we choose to model the error in a discrete general
method. For each measurement action we make many simu-
lated measurements where we perturb the initial conditions
according to an error model for the robot and perturb the
measured value according to a model of the sensor. Because
our ray-mesh intersection method is cheap, the additional
cost these extra simulations add is acceptable.

C. Discrete Measurement Approximation Using Bins

The values from a simulated measurement are used to sort
the particles into bins as illustrated in Figure 4. The fraction
of particles in each bin determines the measurement proba-
bility p(mj), while the number and diversity of particles in
each bin determines the entropy H(P|mj).

A simulated measurement action yields a discrete distri-
bution of possible measurement values for each particle. For
each particle there will be a list of possible measurements
approximating a continuous distribution. We combine these
lists into a single list of <particle, measurement value>
pairs. This list is sorted into bins by measurement value,
such that all < particle i, mj > pairs are sorted into bin mj .

Particle 1

Particle 1

.1 .2 .3 .4 .5

Particle 1

Particle 2

Particle 3

Particle 4

Particle 5

Particle 2

Particle 2

Particle 3

Particle 3

Particle 4

Particle 4

Particle 5

Particle 5

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Fig. 4: Illustration of how a potential measurement sorts
particles into bins



The probability of the true measurement falling within
bin mj is proportional to the number of <particle,
measurement> pairs in the bin. Given that a particular bin
mj contains the true state, the probability that a particular
particle i in that bin represents the true state, pi,b, is pro-
portional to the number of times pairs containing particle i
appear in bin b.

pi,j = η Count[particle i in bin mj ] (14)

pj = η
∑
i

Count[particle i in bin mj ] (15)

The conditional entropy can then be directly calculated.

H(P|mj) = H(bin mj) (16)

=
∑
i

pi,b log pi,b (17)

H(P|M) =
∑
j

pjH(P|mj) (18)

VI. EXPERIMENTS

We evaluated our algorithm both in simulation and on
a physical system. The software was implemented in C++
using ROS for visualization and integration with the robot.
Our results are summarized in Table I.

We tested on a custom 7-DOF robotic arm with approxi-
mately a 1 meter reach, equipped with a touch probe. During
experiments, both the arm and parts were rigidly fixed to the
ground. Due to kinematic inaccuracies and deflections the
global robot accuracy of the end effector placement had an
error of a few millimeters, though we had no method of
measuring this more accurately.

We modeled and constructed an object typical of large
manufacturing (see Figure 1). The meshes agreed with the
physical parts to within 3mm. In simulation the same mesh
was used to model belief and perform simulated measure-
ments.

A. Action Selection

A mean pose was calculated using all of the particles and
candidate actions were chosen in the directions normal to
the faces of this mean orientation. The measurement action
performed at each step was the candidate measurement action
with the largest expected information gain.

Candidate actions were not constrained to intersect the
mesh of any particle, however actions that miss most config-
urations provide little information and are thus not preferred.
Candidate actions that are kinematically infeasible are re-
jected. In our experiments for each measurement performed
we evaluated candidate actions until we had modeled 500
actions with non-zero information gain.

B. Robot Results

Our touch probe consists of a 0.6mm spherical tip mounted
to a 100mm rod attached to a 6-D JR3 force/torque sensor.
Although contacts in any direction were possible, the sen-
sor was significantly more accurate with the contact force
parallel to the shaft, and measurements actions were always
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Fig. 5: Translational and rotational error during localization
on the physical robot

chosen to place the contact force in this direction. Under
these conditions our sensor exhibited a 1mm repeatability.

After selecting from the set of candidate actions the
robot executed the measurement action by first following a
trajectory to the start point Ap, designed to avoid collision
with the part. The end effector was then controlled to move
in a straight line in the direction of the measurement vector
Av until contact was detected. To improve measurement
accuracy a double-touch was implemented: the robot first
moved the probe tip at a higher velocity (1cm/s) until contact,
backed off slightly, then probed at a much slower velocity
(2mm/s). The robot then retreated to a safe point while the
particle filter updated and the next action was selected.

We performed 15 localization trials with identical initial
beliefs and true part location. Figure 5 shows the translational
and rotational error of the mean of the belief distribution
compared with our best measurement of the true state,
averaged over all trials. The error bars show one standard
deviation.

Full videos of the robot localization are available online2.

C. Simulation Results

Simulations allowed us to tightly control experiments and
quickly test many scenarios. Our robot arm and touch probe
are less accurate than those found in precision manufac-
turing, but simulation allowed us to examine the effects

2https://www.youtube.com/watch?v=Gc_TSRL_Azo,
https://www.youtube.com/watch?v=-EDO8XbQ3yI



Measurement Init. Position Init. Angular Final Position Final Angular Average
Error (cm) Uncertainty (cm) Uncertainty (rad) Error (cm) Error (rad) Computation (s)

Physical Robot 0.05 3 0.08 0.22 ±0.09 0.0047 ±0.002 7.0 ±0.3
Simulation of Robot 0.05 3 0.08 0.17 ±0.09 0.005 ±0.003 7.0 ±0.3

Simulation of Accurate Robot 0.01 3 0.08 0.03 ± 0.02 0.0004 ±0.0002 7.8 ±0.3

TABLE I: Results of Experiments

of adjusting the measurement and robot accuracy. We also
easily varied the ground truth and initial belief distributions.

We confirmed that our physical system results agreed
with our simulation results by simulating the same part
orientation, initial uncertainty, and measurement uncertainty.
We then simulated less accurate measurements, more accu-
rate measurements, larger initial uncertainty, and a scenario
where initial uncertainty in some directions was very small.
We present summarized results in Table I after performing 10
localization measurements. We sampled from 500 potential
measurement actions and 500 particles to model the belief.

VII. CONCLUSIONS AND FUTURE WORK

This paper summarized the difficulty of tactile localization
problems when using accurate measurements and presented
an alternative particle filter design that uses rejection sam-
pling and a precomputed distance transform. In addition
we presented a method for fast calculation of information
gain using the particle filter to approximate the continuous
distribution. Combined, these contributions allowed our robot
to autonomously localize a part with high accuracy using few
measurements. This ability is crucial for robots performing
tasks on a diverse set of objects with less human direction.

For future work, we would like to extend our approach
to tasks that require only that the part pose is accurately
in some dimensions, but large error is other dimensions is
acceptable. In addition we currently assume the mesh model
matches our object, yet in reality parts are manufactured with
tolerances. In many cases it is important to localize to spe-
cific features at the expense of the average localization. We
are currently working to efficiently model and reason about
the complicated relationships between different features.
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