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Abstract— In this paper, we propose a touch-based local-
ization approach for a potentially large and complex object
with multiple internal degrees of freedom. Should a task only
require a partial localization of the object, our method selects
the appropriate information gathering actions to register the
desired features. We use probabilistic methods to reason over
the distribution of the estimated object poses in the 6-DOF
configuration space. We introduce the datum-based particle filter
to handle intrinsic tolerances between each of the sections of
the object. We describe two alternative methods for the particle
filter system: one using the full joint belief and the other
reasonably simplifying the belief to achieve a better ability to
scale. We present simulation results for both proposed methods
to show the advantages of our approaches.

I. INTRODUCTION

Many robotic tasks require precisely localizing an object,
for which tactile sensing is an appealing sensing modality.
As motivation, we examine touch localization of a partially
manufactured part that requires additional machining opera-
tions. In order to handle objects with complex shape, prior
information of the object shape is used, and most previous
work assumes that the geometry (CAD) model will match
the real object exactly.

However, during the manufacturing and assembly pro-
cesses there are tolerances between different sections of
the assembly. A datum is defined as a geometric constraint
within the object that is used as the reference to define
the location of one section of the part with respect to
another section. The tolerance is the allowed deviation of the
actual manufactured dimensions from the nominal designed
dimensions. We assume a part can be divided into precisely
manufactured sections, and our method focuses on handling
errors due to imprecise machining over large distances and
non-critical components, as well as assembly tolerances.

The introduction of tolerance increases the degrees of
freedom (DOFs) of the system, as prior to measurement the
true dimensions of the full part are unknown. These internal
DOFs can be modeled as transformations with uncertainty
between sections of the object. For objects with internal
tolerances, perfectly localizing a single datum will not neces-
sarily reduce the uncertainty of the full system sufficiently to
perform the desired task. On the other hand, it is usually only
necessary to localize a subset of the sections of an object.

In this localization problem, the task is to estimate the
pose of a goal feature given multiple measurements obtained
through probing. These probing measurements are modeled
as a Markov process, where each measurement corresponds
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(a) Initial belief

(b) Belief after localization of goal feature (green cylinder)

Fig. 1: Visualization of the belief of the pose of all sections
of the part
(a): The prior belief of the poses before localization. The
uncertainty of the goal feature is too high to perform the
task.
(b): The belief of the poses after performing measurements to
localize the goal feature. The pose of the goal feature is now
known well enough to perform the task. Although the bottom
edge (purple) and perpendicular section still have noticeable
error, precise localization of these features is not needed.

to a single action/observation pair. This model eliminates the
need to store all of the past measurements. We use a particle
filter to numerically store and update the belief [1].

Figure 1 shows a visualization of the initial (1a) and
final (1b) beliefs of the poses of the sections of the object.
The task is to drill a hole, shown as a green cylinder, at
a specific location defined by offsets from other sections.
Internal tolerances prevent simply treating the entire system
as a rigid body.

This paper first briefly summarizes the framework of
our previous work on rigid-body particle filtering for high-
precision localization (section III), which overcomes the
particle starvation problem and serves as the basis for this
paper [2]. We then introduce the datum-based particle filter to
generalize this rigid-body approach for objects with coupled
rigid sections (section IV). We propose two related but



different approaches for this problem. The first approach
maintains a single particle filter system that stores the full
joint distribution of the coupled datums, while the second
approach simplifies the relationships by assuming indepen-
dence between the distribution of the internal transformations
and the pose of the sections, and models the system using
separate coupled particle filters.

We also generalize the technique of choosing informative
measurement actions to accommodate objects with coupled
sections. To achieve this, many potential measurement ac-
tions are sampled and the action with the highest expected
information gain is selected. Fully predicting the information
gain over the continuous belief is computationally expensive,
so similar to other approaches [3] our work involves a fast
approximation for information gain that takes advantage of
the discretized belief from the particle filter (section V). We
demonstrate our method on a simulated part (section VI).

II. RELATED WORK

Recently, there have been a variety of approaches that
allow robots to localize objects solely with contact sensors.
Different contact sensors have been explored and developed,
including basic binary sensors, 6-axis force and torque
sensors [4], soft tactile sensor arrays [5], and bio-inspired
fingertips [6]. Localization with laser sensors has also been
used in the high-precision CNC localization, where a 3D
point cloud is acquired in order to estimate the transformation
between the actual and planned pose [7]. Our localization
approach can be generalized to these sensors which can
distinguish between contact and free-of-contact states.

Particle filters have been widely used and developed since
their introduction. Unlike some other Bayesian estimation
approaches such as Kalman filters [8], extended Kalman
filters [9] and unscented Kalman filters [10], particle filters
can easily model non-Gaussian and multi-modal probability
distribution. For touch localization, contact sensors yield a
highly non-linear measurement model, and the belief can
frequently become multi-modal when multiple configurations
are all consistent with the measurement. These properties
make particle filter a popular approach for touch localization
tasks.

However, particle filters will experience particle starvation
for measurements with very low uncertainty and objects
with a high dimensional configuration space [11]. Koval
introduced the Manifold Particle Filter to address this issue
by implementing different sampling and weighting strategies
compared to the traditional particle filters [12][13]. Instead
of sampling particles from the process model and weight-
ing them based on the observation, samples are directly
drawn from the contact manifold, given the observation.
This provides a fast and robust solution for objects with
simple shapes. For complex object geometries, as in our case,
direct, efficient sampling from the contact manifold becomes
difficult.

Petrovskaya tackles particle starvation during touch local-
ization by combined Monte Carlo approaches with annealing
as a smoothing technique [14]. She introduced Scaling Series

algorithms for 6-DOF global tactile localization in both full-
constrained and under-constrained scenarios to overcome
particle starvation by adjusting particle density depending on
the complexity of the posterior. Multiple iterations through
the measurement data are used and the precision of the belief
is scaled from low to high in order to avoid unnecessarily
precise estimates in unlikely regions of belief space.

All of the work mentioned so far assumes the prior
information of the object geometry matches the real piece
perfectly. Hebert et al. [15] solve a touch localization prob-
lem using a Bayes filter where an object may have additional
unknown parameters describing the shape, such as a screw
driver with an unknown length handle. Measurement actions
are selected using joint information gain over the object’s
pose and these internal parameters.

III. RIGID-BODY OBJECT LOCALIZATION

The datum-based particle filter described later relies heav-
ily on the framework and methods developed for rigid-body
localization developed in [2], and this section provides an
overview of the relevant details. The task is to determine
the pose of an object by choosing and performing touch
measurements, given the geometry of the object and prior
belief over the distribution of poses.

The geometry of the object to be localized is stored in
a STL file using a triangular mesh, defined in the part
frame. The pose of the object can then be defined as the
transformation between this part frame and the world frame
of the workspace. The object is assumed to be fixed in the
workspace during measurement and localization, thus the
configuration will not change during the localization process.

In order to estimate the true distribution of the pose, each
particle in the particle filter represents a single potential
pose x ∈ SE(3) of the object. For a rigid body, the pose
includes both translational dimensions (x, y, z) and rotational
Euler angles (α, β, γ). We represent the state as a 6D vector
(x, y, z, α, β, γ) in the configuration space. The particle filter
updates based on a set of measurements Zt = {z1, ..., zt}
made by the robot directly on the object.

A. Measurement Model

A measurement action, M is defined by a start point
Ap for the probe and a linear trajectory vector Av both
in R3. The measurement value m is the distance the probe
travels in the direction of Av until contact is made. The
point of contact can then be recovered by Ap + m Av

||Av|| .
The entire information obtained from the measurement t is
zt = {Mt,mt}. Measurement error exists due to sensor
error and robot uncertainty.

B. Particle Filter

At each time step, the belief is a probability distribution
of poses, approximated using a particle filter. This belief
distribution is also used to plan measurements actions that
maximize the expected information gain. The advantage of
using a particle filter over other Bayes estimation methods,
such as the original[8], extended[9] or unscented[10] Kalman



filter, is that a particle filter can model multi-modal non-
Gaussian distribution with a non-linear measurement model.

The belief of the state at time t is dependent on the mea-
surements: bel(xt) = p(xt|z1, . . . , zt, x0). The measurement
model follows a non-linear probabilistic function of the true
state: zt ∼ p(zt|xactual). As in all Bayesian filters, the belief
bel(xt) is calculated recursively as follows1 [11]:

bel(xt)← η p(zt|xt) bel(xt−1) (1)

with η as a normalization factor. Each new measurement
value triggers an update to the belief bel(x).

The traditional particle filter uses importance sampling to
update particles [11], where samples are drawn based on the
process model and weighted by the observation. However, for
precise measurements and higher dimensions, the chance that
a particle is consistent with the measurement is extremely
low, thus few of them will survive during the update [13].
Alleviating this problem would require an exponential (in the
dimension of the state) number of particles to maintain high
enough particle density.

Instead, our approach updates the particles using rejection
sampling [2]. At each update step t, the continuous prior be-
lief is estimated using Gaussian Mixture Models by applying
a Gaussian kernel to each particle, with the kernel covariance
proportional to the covariance of the particle configurations.
New samples xt are then drawn directly from this estimated
prior. Using rejection sampling, each sample is accepted
with probability p(zt|xt). Sampled configurations with the
part boundary far from the measured contact location, and
thus inconsistent with the measurement, will have a low
probability of being accepted

The computational cost of potentially rejecting many
samples is offset by using a voxelized distance field [16],
where the distance between each voxel in 3D workspace
and the object is precomputed. As the measurement zt is
described in the world frame, during the rejection sampling
the measurement is transformed to the part frame before
lookup in the distance field. Let T (xt) be the transformation
from the world frame to the part frame. The minimal
unsigned distance distu(zt, S) between each measurement
zt and the object S(xt) can be obtained directly [2]:

distu(zt, S(xt)) = Df (T (xt)
−1zt) (2)

dist(zt,S(xt)) ={
distu(zt, S(xt))− rp, if zt /∈ S
−distu(zt, S(xt))− rp, otherwise.

(3)

where Df is the precomputed distance field, rp is the radius
of the spherical tip of the touch probe.

New samples xt are accepted based on the signed distance
dist(zt, S(xt)) between the object and the measurement
on the object. Rejection sampling continues until a desired
number of particles have been accepted for this update. These
particles represent the updated belief bel(xt) of the pose.

1The full update of a Bayesian filter also includes a process model. Our
assumption of a fixed object yields the static process model and this simpler
formulation

IV. DATUM BASED PARTICLE FILTER

The particle filter localization method presented above
assumes that the object matches its CAD model exactly.
However, this is usually not the case, due to tolerances
in the manufacturing and assembly processes. To handle
manufacturing deviations, features on parts are not located
with respect to the part frame, but with respect to datums,
(edges, surfaces, and holes) on the actual “as built” part.
Incorporating the notion of datums, and their relationships,
adds complexity because the relationship between the datum
and the CAD model contains uncertainty. Thus, measuring
one section of the assembly provides only uncertain updates
to other sections, dependent on the specified tolerances. The
following formulation treats these as semi-rigid parts, where
each complete part is composed of rigid sections, coupled
through a probabilistic distribution of transformations con-
necting the section frames. The datum based particle filter is
introduced to allow updates on the belief of all sections of a
part using the prior distribution of coupling transformations,
and a measurement on a single section.

A. Datum Representation

The formulation introduced here treats the overall part as
composed of separate, known sections. The problem is to
precisely localize some feature which cannot be measured
directly (e.g. a location to drill a hole) with respect to given
datums (other sections). To localize the goal feature, certain
datums must be localized in certain dimensions. For instance,
Figure 2a shows a hole feature referenced to the top and
right edges datums of our part. The true part configuration
is shown in gray in 2b and 2c. In this example, it is necessary
to localize the top edge’s vertical position and orientation,
but not its in-page or horizontal position. Similarly, the right
edge only must be localized horizontally.

We introduce two approaches; the first explicitly represents
the joint probability distribution between the sections, and the
second stores separate, independent probability distributions
for each section. Figures 1 and 2 visualize the independent-
state particle filter. The full-state particle filter produces sim-
ilar images. We continue to assume that the measurements
will be made by point-based sensors.

Throughout the rest of this paper we will use the following
notation. Xk

t is the set of N particles representing the belief
of section k at time step t. Frequently t is omitted when
implicit. For independent-state representation, each particle
is a configuration for a single section Xk = {jxk}Nj=1. Oth-
erwise, each particle is a joint configuration jx = {jxk}Kk=1

of all K sections in the part. The omission of k indicates
all necessary particles to represent the belief of the part for
both representations: X = {Xk}Kk=1 = {jx}Nj=1.

B. Geometric Relationships

Geometric relationships are defined between two or more
part sections. The existence of the tolerance introduces
uncertainty to these relationships, which are modeled as a
distribution of transformations in the configuration space
between the pose of each section. More generally, the



 0.09 

 0
.1

3 

 0
.2

3 
±0

.0
05

 

 0.01 

 0.876 ±0.005 

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
   LINEAR:
   ANGULAR:

FINISH: DEBURR AND 
BREAK SHARP 
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:10 SHEET 1 OF 1

A3

WEIGHT: 

MainVerticalWithHoleSOLIDWORKS Educational Product. For Instructional Use Only

(a) CAD

(b) Update from a measurement on the top datum

(c) Update from another measurement on the right datum

Fig. 2: Visualization of independent-state particle filter
(a): Side view of the CAD drawing with dimensions (simpli-
fied for clarity). This drawing indicates the nominal distance
between the top and bottom edge is 0.23m, with a symmetric
tolerance of 5mm. This drawing also defines a hole with a
1cm diameter, and the top edge as its vertical datum and side
edge as its horizontal datum.
(b): The beliefs of the top (green) and right (blue) edges
of the part are shown. The true part location is shown in
gray. The measurement (arrow) on the top section partially
localized the top edge. For clarity in the image, the belief
of the other sections are not shown, and only 50 of the 500
particles are shown.
(c): A following measurement (arrow) on the right edge
further localizes the part. This measurement provides infor-
mation on the right edge directly, and the top edge indirectly.

conditional probability p(xkt |xt) represents the belief of the
pose of section k given the poses of the other sections.

A measurement is made on a single section at each step
by a touch probe. Let the measurement on the section k at
step t be zkt , then the posterior of section k is p(xkt |xt, z

k
t ).

In the following algorithms, the section that a measurement
contacts is known. This assumption is reasonable if the
uncertainty of the prior belief is small compared to the
physical size of each section, and measurement are not
chosen on the boundary between sections. If this assumption
does not hold, localization can be performed for the whole
object using the methods of section III to get better estimate,
before considering the object as a combination of coupled
sections.

Algorithm 1 Full-State Particle Filter

Input: number of particles N and number of sections K
Input: particles Xt−1 = {jxt−1}Nj=1

Input: observation zst on section s
Input: meshes S = {Sk}Kk=1

Output: particles Xt = {jxt}Nj=1

1: build distance field Df (p) on mesh Ss

2: j ← 1
3: while j ≤ N do
4: x ∼ p(x|Xt−1) . x = {xk}Kk=1

5: dist← Df (T (x
s)−1zst )

6: if dist ≤ ξ then
7: jxt ← x
8: j ← j + 1
9: end if

10: end while

C. Full-State Representation

The first method we present maintains the full joint proba-
bility distribution between sections using a single set of full-
state particles: Xt = {jxt}. Thus, each particle represents
a combination of the poses of all of the sections, which is
drawn from the prior joint distribution bel(x0).

Instead of applying a Gaussian kernel in 6D configura-
tion space as done in section III, the continuous prior is
estimated by Gaussian Mixtures in the full 6n-dimensional
configuration space, with the kernel covariance proportional
to the covariance of the sampled states. This is achieved by
applying kernel density estimation techniques. One popular
method for the bandwidth selection is the Silverman’s rule-
of-thumb estimator[17]. Other techniques are discussed in
more detail in [18].

Although it seems at first that the high dimensional state
space will require a prohibitively huge number of particles
to approximate the true distribution, in practice, we have not
found this to be the case. Largely, this is due to the small
internal tolerances compared to the uncertainty of the pose
of the object as a whole, so particles tend to cluster in a
small subset of the full state space. Note that if there were
no uncertainty in the transformation between sections, then
the system reduces to a single 6 dimensional state space.
In addition, the Gaussian kernel applied to the particles is
capable of creating broad beliefs in specific dimensions[2],
thus this particle filter is able to model the mixture of
precisely localized, and poorly localized dimensions. Finally,
the sample acceptance probability, p(zt|xt), depends only on
the 6 dimensional subspace corresponding to the pose of the
section being touched, and although only a thin manifold
is accepted with high probability, the particle starvation
challenge is no worse than previously addressed in III.

At any time step t the belief of the state bel(xt−1) =
p(xt−1|Zt−1, x0), and xkt−1 is the portion of xt−1 repre-
senting the pose of section k. During rejection sampling,
new full-state samples xt are drawn from the estimated
b̂el(xt−1) directly. The probability of accepting a sample



Algorithm 2 Independent-State Particle Filter

Input: number of particles N and number of sections K
Input: sets of particles Xt−1 = {Xk

t−1}Kk=1

Input: observation zst on section s
Input: meshes S = {Sk}Kk=1,
Input: transformations {p(T s

k )}Kk=1

Output: particles Xt = {Xk
t }Kk=1 = {{jxkt }j}k

1: build distance field Df (p) on mesh Ss

2: for k = 1, ...,K do
3: j ← 1
4: while j ≤ N do
5: x ∼ p(xk|Xk

t−1)
6: T s

k ∼ p(T s
k )

7: x̃ ← T s
k × x

8: dist← Df (T (x̃)
−1zst )

9: if dist ≤ ξ then
10: jxkt ← x
11: j ← j + 1
12: end if
13: end while
14: end for

is based on the measurement zkt on section k, and is
computed by extracting the 6D pose xkt from each full-state
sample xt. Equation 2 and 3 are then used for the rejection
sampling, except that the transformation from the extracted
xkt is used to transform the measurement. If dist(zkt , Sk(x

k
t ))

is sufficiently large, this full-state sample xt is rejected,
otherwise accepted. Note that the full-state sample xt is
accepted based on p(zkt |xkt ), and the CAD model used for
distance field k is the mesh for that particular section, Sk

(shown in Algorithm 1). For simplicity, the pseudo-code does
not include the adaptively adjusted sample size based on KL-
divergence[2][19].

D. Independent-State Representation

The first approach described above tracks the updates of
both the pose of each datum and the their transformations by
maintaining a full-state representation of the distribution. An
alternative is to maintain the probability distribution for each
section separately. Instead of using a full high-dimensional
particle filter for the full object, individual 6-dimensional
particle filters are used for each individual section under the
approximation that the belief over transformations between
sections are fixed and independent. While this loses infor-
mation compared with the full joint belief, in practice this
loss is acceptable.

As in the rigid body particle filter described in III, a sample
in the particle filter for section k represents a SE(3) pose of
the geometry of section k. The transformation information
between different sections are defined explicitly. The prior
belief on the transformation from section k to section j is
bel(T j

k ), which is a distribution over SE(3) transformations.
A measurement on a single section updates all individual
particle filters related through a defined transformation distri-
bution. Given a measurement zk on the section k, the updated

belief becomes p(xjt |T
j
k , z

k) for a related section j.
The update to the belief bel(xkt ) given a measurement

performed on section k itself is identical to the particle filter
update for the rigid object. Since T k

k is the identity with
probability 1, the updated belief can be written as:

bel(xk) = p(xk|T k
k , z

k) = p(xk|zk) (4)

For a section j that references section k (k 6= j), each
new sample xjt is drawn from the prior of its corresponding
particle filter j. xjt is then transformed from the frame of
section j to the frame of section k:

x̃k = iT k
j × xj (5)

where iT k
j ∼ bel(T k

j ) is a sampled transformation from the
distribution bel(T k

j ). As the measurement was performed on
section k, the geometry of section k is used rather than
j when computing the consistency with the measurement.
The sampled particle is accepted with probability p(zt|x̃k).
The above process is repeated until the desired number of
particles have been accepted (shown in Algorithm 2).

V. PREDICTING EFFECTIVE MEASUREMENT ACTIONS

Performing measurements is expensive, so we choose the
measurement action that provides the most information gain
on the goal feature. We treat each action as a probabilistic
decision over a set of particles approximating the belief of
the goal feature. This is an approximation for the information
gain for the underlying, continuous belief distribution. The
best measurement may not be on the goal feature, and it
may be impossible to even measure the goal feature directly.
Our formulation predicts the information gain on the goal
feature for both a measurement directly on the goal feature,
or indirectly for a measurement on datums or other sections
of the part.

A. Information Gain

Given XG, a set of particles representing the belief of
the goal feature, the information gain from a measurement
action M is defined as the expected reduction of entropy.

IG(XG|M) = H(XG)−H(XG|M) (6)

H(XG) is the entropy of the particles and H(XG|M) is
the entropy of the particles conditioned on the measurement
action.

The entropy of a discrete distribution of states depends
only on the probabilities of each state occurring.

H(XG) = −
∑
i

wi logwi (7)

where wi is the weight of particle i.
To calculate the conditional entropy, H(XG|M), the

measurement actionM is simulated on the part distribution.
Performing a measurement action yields a continuous dis-
tribution of measurement value. W samples are drawn from
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Fig. 3: Binning of potential measurement on particles for use in calculating information gain. The three arrows represent
the nominal measurement action M with simulated deviation δj . The horizontal lines divide the measurement values into
the numbered bins.

this distribution for each particle:

mi,j = Simulate({M+ δj},i xG) + ηj

j ∈ {1, 2, . . . ,W}
i ∈ {1, 2, . . . , N}

(8)

where δj is the deviation from the nominal measurement
action, Simulate computes the value for a measurement
action applied to the part in a specific configuration, and
with ηj as measurement noise.
H(XG|M) is calculated by dividing the continuous val-

ues mi,j into discrete bins, bk. The conditional entropy of
this measurement action is then:

H(XG|M) =
∑
k

p(bk) H(XG|bk) (9)

where p(bk) is the prior probability that this measurement
will fall into bin bk and H(X |bk) is the entropy of the
particles within bin bk. The likelihood of a bin is computed
by summing the weights of the measurements in that bin.
Defining the weight of the bin, Wk as:

Wk =
∑
i,j

1(mi,j ∈ bk) · wi (10)

then:

p(bk) =
Wk∑
i,j wi

(11)

=
Wk

W
(12)

Given a bin, the probability of a specific particle is:

p(ix|bk) =
∑

j 1(mi,j ∈ bk) · wi

Wk
(13)

Then the entropy of the bin can be calculated:

H(X |bk) = −
∑
i

p(ix|bk) log(p(ix|bk)) (14)

Figure 3 visualizes this binning process. Three measure-
ment actions (arrows)M+δj are simulated on three configu-
rations of the part (ix = particle i). The intersection between

the simulated measurement action and the part determines
the measurement value mi,j . These measurement values are
sorted into bins.

Adaptations are made to this process to accommodate our
two representations as described next:

B. Information for Full-State Representation

The full-state representation does not maintain a set of
particles over just the goal feature, but rather each particle,
X , represents the full 6 × n state. Using these full-state
particles for XG above provides a good metric for localizing
every section of the part, but a poor metric for localizing the
goal feature. This metric would often suggest to perform
measurements on non-datum features that are irrelevant to
the location of the goal feature. The error in this metric is
due to

H(XG|M) 6= H(X |M) (15)

One approach is to incorporate domain knowledge when
designing the full-state representation, by including only the
relevant datums necessary for a particular task. Then, any
information on this limited full state will be reduction of
uncertainty of at least one datum required for the task.

An approach that does not require pruning irrelevant
sections from the full state involves combining particles that
produce similar configuration for the goal feature. To calcu-
late H(XG|M) using particles X , measurement actions are
used to sort the particles into bins as in described in section
V-A. Then, particles that produce sufficiently similar goal
feature configurations are treated as identical particles when
computing entropy, by combining these into groups L.

p(Lx|bk) =
∑

i,j 1(mi,j ∈ bk)1(i ∈ L) · wi

Wk
(16)

H(X |bk) = −
∑
L

p(Lx|bk) log(p(Lx|bk)) (17)

These group can be constructed by discretizing the space of
possible configurations for the goal feature. An issue which
this paper does not address is the balance of a requiring
a reasonably small number of particles while maintaining



sufficient density for this descretization of goal feature
configuration to produce meaningful group sizes.

C. Information for Independent-State Representation

The independent-state representation does maintain the set
of goal feature particles, XG, however additional steps are
needed when computing Eq. 8. When simulating M, the
robot will measure some section, S, of the part. Simulating
the measurement using XS is straightforward, but leads to
computing IG(XS |M), which is not the desired metric
IG(XG|M).

The independent-state representation makes the approx-
imation that the distribution of transformations between
sections are fixed and independent, and this approximation
is used to achieve the desired metric. A temporary set of
particles X̃

S
is created by sampling transforms TSG and

applying these transforms to XG. X̃S is used in Eq. 8
to generate sample measurement values m̃i,j , which are
used in the calculation for bin entropy H(X |bk). While
the independence approximation could be used again in the
calculation of bin probabilities p(bk), this approximation is
not needed. Measurements mi,j calculated using XS are
used to calculated p(bk).

VI. EXPERIMENTS

We validated both the full-state representation approach
and independent-state representation approach in simulation.
The software was implemented in ROS using C++. In our
experiments, we simulated a specific task which is common
in manufacturing: localizing a target location, defined by
datums, to drill a hole on an object. The datum-based
particle filter was simulated on a structural component used
in aircraft. This is the same object as used in the original
rigid-body particle filter paper[2], with adaptations made to
allow internal degrees of freedom. The object is composed
of 6 precisely manufactured sections, and tolerance between
sections was determined by engineering drawings (for pre-
cisely defined features), and our assumptions (for loosely
defined relationships).

A. Measurement Selection

The target hole is localized by measuring its referenced
datums. Specifically, the pose of the hole feature (green
cylinder) in figure 1 is defined by an offset distance from the
top and right sections shown in figure 2a, and the axis of the
hole is orthogonal to the front plane. The hole does not exist
yet, and thus cannot be measured directly. In order to localize
the hole location precisely without direct measurement on
the hole, we assume that the transformations between the
target location and its defining datum sections have very
small uncertainty along some dimensions, e.g. the vertical
distance between the center of the hole and the top plane.

At each step, the measurement is simulated using ray-mesh
intersection algorithms[2]. Potential measurement actions are
sampled in the workspace. The information gain for each
measurement is calculated based on the current estimated
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Fig. 4: Comparison of the accuracy of the update step when
using full-state particle filter and independent-state particle
filter

pose of each section. In our experiments, for each measure-
ment performed we evaluated candidate actions until we had
modeled 500 actions with non-zero information gain. Only
the measurement action with the largest expected information
gain is “performed” in simulation and used to update the
belief.

B. Simulation Results

We evaluated our two proposed approaches with similar
settings. A total of 20 measurements are simulated during
each trial. For the full-state representation, a maximum of
800 full-state particles are used. For the independent-state
representation, a maximum of 500 particles are used for each
section. The simulation uses 6 mesh models for different
sections. After each update, the average estimated pose of
the hole is computed by averaging the hole poses produced
from all particles.

Figure 4 shows the comparison between the full-state par-
ticle filter and independent-state particle filter. Translational
error and rotational error are defined between the estimated
pose of the hole and its true state. From the simulation,



the errors of the estimated pose decreases rapidly for both
approaches after each new measurement is applied on the
system.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced the datum-based particle filter,
which provides a method to localize a task location defined
by datums on an object with internal degrees of freedom.
This method stores the belief as the belief over the poses of
multiple rigid sections comprising the object using a particle
filter, and selects measurement actions using the metric
of information gain. Two implementations are described:
a high dimensional particle filter capturing the full state,
and multiple particle filters coupled through the tolerances
between sections. The techniques to avoid particle starvation
during rigid body localization have been extended to both im-
plementations of the datum-based particle filter. Information
gain of a potential measurement action is approximated as a
discrete probabilistic decision process over the particles com-
prising the belief. The formulation presented distinguishes
between useful information which updates the belief of the
target feature, and information which only improves the
belief of non-datum sections.

For future work, we would like to implement our ap-
proaches on a physical system for further evaluation. In
addition, we currently proposed two separate representations,
yet in reality they can be combined together: use full-state
particle filter for groups of sections with strictly-defined
internal relationships to minimize the loss of information,
while using independent-state particle filter to build upon
different full-state particle filters and other loosely-defined
sections for better scalability.
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