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Abstract. We address the problem of robot motion planning under uncertainty
where the only observations are through contact with the environment. Such prob-
lems are typically solved by planning optimistically assuming unknown space is
free, moving along the planned path and re-planning if the robot collides. How-
ever this approach can lead to many unnecessary collisions and movements. We
propose a new formulation, the Blindfolded Traveler’s Problem (BTP), for plan-
ning on a graph containing edges with unknown validity, with true validity ob-
served only through attempted traversal by the robot. We prove that BTP is NP-
complete and present a number of approximation-based policies. In particular, we
analyze the case of a robot arm where it is challenging to construct a reasonable
prior over obstacles. We examine a number of belief approximation techniques
and finally propose a policy-belief combination. For the policy we propose graph
search with edges weights augmented by the probability of collision. For the be-
lief representation we propose a weighted Mixture of Experts of Collision Hy-
pothesis Sets and a Manifold Particle Filter. Empirical evaluation in simulation
and on a real robot arm shows that our proposed approach vastly outperforms
several baselines as well as a previous approach that does not employ the BTP
framework.

1 Introduction

We examine the problem of robot motion planning in partially-known environments
where obstacles are sensed only through contact. This problem occurs quite frequently
in manipulation tasks with sensing limitations such as a narrow field of view, occlusions
in the environment, lack of ambient light, or insufficient sensor precision. For example,
a robot may reach into dark confined areas during maintenance and assembly (e.g. in-
specting the insides of aircraft [1]) or during everyday household tasks (e.g. reaching
deep into a cabinet or behind a box [2]). Here, the goal is to minimize the total time
it takes for the robot to move around obstacles sensed on-the-fly and reach a target
configuration.

Consider the scenario where a robot arm is tasked with reaching into a box whose
location is uncertain (Fig. 1). This could be framed as a POMDP, where the belief over
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Fig. 1: Overview of the BTP framework for planning with contact feedback. The robot
is uncertain about location of the back wall. As it attempts to traverse edges, it partially
localizes the wall and eventually finds its way to the goal.

occupancy is obtained through noisy collision measurements. However the possible
states of the POMDP include all possible arrangements of obstacles, and the action
space includes all possible motions. The general POMDP is thus intractably large.

Instead, such planning problems may be solved by constructing a graph [3], where
vertices represent robot configurations and edges represent potentially-valid movements
of the robot between these configurations. Here, the validity of edges is unknown a
priori. A natural strategy is Optimism in the Face of Uncertainty (OFU) [4] — assume
untraversed edges are valid, plan the shortest path and execute it. If the shortest path
is indeed valid, the robot reaches the goal optimally. Otherwise, it removes the invalid
edge from the graph and replans. OFU is effective in less-cluttered environments, where
the robot finds a path to the goal after a few collisions. However, on problems with
narrow passages such as Fig. 1, OFU can lead the robot down a “rabbit hole” trying
paths that are not likely to be valid.

Our key insight is that the validity of edges in the graph is correlated. There are
two main reasons for this correlation. First, edges overlap in swept workspace volume.
Second, objects in the world occupy multiple workspace cells. Given a prior on edges,
a robot can exploit such correlations to infer edge validities and reach the goal quickly
(Fig. 1). We address the following research question:

How should a robot navigate on a graph with unknown edge validites to mini-
mize the expected traversal cost?

We refer to this broader problem as the Blindfolded Traveler’s Problem (BTP). We show
that this problem is NP-Complete and discuss a set of approximation-based policies. We
also propose a new policy, Collision Measure, that is both efficient to compute and has
theoretical guarantees.

We formulate robot arm planning with contact feedback as a BTP. We face an ad-
ditional challenge for realistic scenarios – the initial belief is approximate and can be
misleading. With a good initialization we show a particle filter that updates hypothesis
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worlds from contact observations suffices. Without a good initialization, we show an
algorithm that starts with free-space and builds up a world model consistent with ob-
servations is effective. Since both scenarios occur in practice, we propose a Mixture of
Experts framework for mixing these two belief update strategies.

In summary, this paper makes the following contributions:

– Formulate the Blindfolded Traveler’s Problem. (Section 3)
– Map the planning with contact feedback task to a BTP. Since the posterior is not

specified, we propose a set of belief approximation strategies. (Section 4)
– Propose a set of approximation strategies to solve the BTP. (Section 5)
– Provide empirical evaluation of different strategies and belief approximations on

simulated and real robot arm BTP instances. (Section 6)

We evaluate all strategies on two 7 DOF robot arm planning scenarios in simula-
tion, each with three varying levels of difficulty (by adding error in prior). We also
evaluate strategies with practical computation times on a real robot arm. We find that
the Collision Measure strategy using a Mixture of Experts belief tends to outperform all
other baselines by planning consistently low cost paths with consistently low computa-
tion time. Furthermore, we find using the BTP framework significantly outperforms a
baseline strategy used in planning with contact feedback.

2 Related Work

We examine planning under contact sensing uncertainty which leads to a number of
challenges. While some approaches consider tactile skin [5], with only torque feedback
contact observations cannot precisely localize collision points. One approach is to use
non-parametric particle filters, however, they encounter problems with contact mea-
surements [6]. The Manifold Particle Filter overcomes this by sampling from different
proposal distributions depending if contact/no contact [7], though this method requires
an accurate prior over obstacles. Without a prior over obstacles we use the Collision
Hypothesis Set belief, which we have previously employed in search using RRT [8].

Our problem is closely related to that of real-time motion planning on roadmaps [3].
Roadmaps, which are graphs in configuration space, are efficient because they can be
reused across planning iterations. In robot motion planning, edge evaluation dominates
computational complexity [9], therefore the key to minimizing search times is lazi-
ness [10, 11]. LAZYSP [12], shown to be optimally lazy [13], optimistically plans the
shortest path and checks edges sequentially till an infeasible edge is encountered. Pri-
ors on edge validities can be further exploited to minimize edge evaluation [14–16].
These problems can be further mapped to Bayesian active learning [17–19] to compute
policies that actively choose edges to evaluate to minimize uncertainty about which
path is feasible [20, 21]. An alternate formulation is online shortest path routing [22–
24] which is a particular instance of combinatorial bandits [25]. However, unlike our
problem, these methods have full flexibility to telelport to and evaluate any edge.

Our work falls under the domain of planning under sensing uncertainty. D* [4]
and variants [26, 27] typically replan optimistically and re-using the search graph. An
alternative is to cast the problem in a Bayesian paradigm using an occupancy map [28].
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However, such methods usually plan to short horizons. Since this problem arises from
the mobile robot community, the focus is primarily robot safety [29]. For our problem,
the robot is able to collide safely and we seek to minimize the travel cost.

The BTP problem is closely related to the Canadian Traveler’s Problem (CTP) [30]
where neighboring edge costs are revealed when an agent visits a vertex. DAGs can be
solved exactly via DP [31] but the general problem is PSPACE-complete [32]. Typically
CTPs are solved using heuristics [33] adopted from probabilistic planning [34] or using
Monte-carlo Tree Search [35, 36]. CTP can also be cast in a Bayesian framework [37]
and solved near-optimally using informative path planning techniques [38, 39]. While
we evaluate some of these strategies for our robot arm planning, others are prohibitively
expensive due to expensive collision checking and posterior update. We therefore adapt
the Collision Measure [14] as a computationally efficient strategy for the CTP/BTP.

3 Problem Statement

We propose the Blindfolded Traveler’s Problem as a graph search problem to model the
contact feedback planning problem. In a BTP the traveler traverses a graph attempting
to reach a goal. While traversing an edge the traveler may encounter a blockage and be
forced to retrace back to the previous node and plan an alternate route. While the traveler
only directly senses the validity of the attempted edge, blockages may be correlated,
thus providing implicit information about the validity of other edges in the graph.

3.1 Blindfolded Traveler’s Problem

Let G = (V, E ,W) be an explicit directed graph where V denotes the set of vertices, E
denotes the set of edges andW : E → R≥0 denotes the weight of each edge. For each
edge e ∈ E , let x(e) = {0, 1} denote if the edge is invalid (0) or valid (1). Note that x(e)
is latent. Additionally, let η(e) ∈ [0, 1] be the latent blockage of an edge. The blockage
is the fraction of an edge that can be traversed before encountering an obstruction.

A traveler located at vertex v1 may attempt to traverse any edge e1,2 connecting a
neighboring vertex v2. An attempt (v1, e1,2) is mapped to a resultant vertex and traversal
cost specified by the following function:

Γ (v1, e1,2, x, η) =

{
(v2, w(e1,2)) x(e) = 1

(v1, 2η(e1,2)w(e1,2)) x(e) = 0
(1)

Traversing a valid edge moves the traveler to the new vertex v2 with a traversal cost
equal to the weight of the edge we1,2 . Traversing an invalid edge returns the traveler to
the original vertex v1 with a traversal cost equal to the distance travelled to the blocked
point and back, 2η(e1,2)w(e1,2).

The traveler has a prior P on the joint probability P (x, η). When attempting to
traverse edge e, the traveler receives the observation o = (x(e), η(e)). The traveler
maintains a history of all observations, i.e. ψT = {ot}Tt=1. The Blindfolded Traveler’s
Problem can be fully specified by the tuple 〈G,P, vs, vg〉 where vs, vg ∈ V are the
initial and goal vertices.
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Fig. 2: Blindfolded Traveler’s Problem

The solution to the BTP can be represented as a policy tree π, where the nodes
specify an edge e that the traveler attempts to traverse. Each branch is labelled by an
observation oe. The root node of the tree is an edge emanating from start vertex vs.
To follow the policy, the traveler attempts to traverse the edge e and takes the branch
matching the observation oe to go to a next edge e′. The procedure repeats until the
traveler reaches a terminal node which is always the edge evg,vg , i.e., a loop at the goal
vertex.

The cost of a policy for a given (x, η), c(π(x, η)) is the sum of traversal costs. The
goal of the traveler is to minimize the expected cost

min
π

E(x,η)∼P [c(π(x, η))] (2)

We show that BTP is NP-complete. We do so by constructing a mapping between
any Optimal Decision Tree (ODT) problem, where the goal is to find a hypothesis with
minimum tests, to an equivalent BTP. Since ODT is NP-Complete, so is BTP. For the
proof and further details refer to supplementary materials [40].

3.2 Contact-based Planning Problem as an instance of BTP

We now examine the problem of a robot arm planning with unknown workspace obsta-
cles sensed only through contact and map this problem to an instance of BTP.

The robot’s configuration space C is composed of free space Cfree and obstacles
Cobs = C \Cfree. The robot operates in a workspaceW containing workspace obstacles
Wobs. A robot configuration q ∈ C occupies a workspace volume R(q) ⊂ W . We say
q is in collision ifR(q) ∩Wobs 6= ∅.

The graph G is a roadmap where vertices V are configurations and edges E : [0, 1]→
C are paths through C connecting vertices, with w(e) = ||e(0)− e(1)||. An edge there-
fore represents the swept volume We = ∪d∈[0,1] R(e(d)). The prior P is a probabil-
ity density over Wobs. This is mapped to C via R(·) thus inducing a joint probability
P (x, η).

We consider a robot that senses obstacles indirectly though collision using measured
joint torque τmeas ∈ RJ , where J is the number of robot joints. Using a mass model of
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the robot the expected joint torque due to gravity and dynamics τexp is calculated and
used to estimate the external joint torque τext = τmeas − τexp. A noise threshold τ th

is set for each joint and τext triggers a collision observation at qcol whenever any joint
exceeds its threshold. A successful edge traversal results in o = (1, 1), while a collision
yields o = (0, η) where e(η) = qcol.

Furthermore, as a slight augmentation of BTP, a collision yields additional informa-
tion. Joint i exceeding τ thi implies an external (contact) force on a link after joint i on
the kinematic chain. A set of links Lcontact that must contain a contact is constructed by
first finding the largest i where τexti > τ thi , then adding all links downstream from joint
i to Lcontact. Define R(q,L) ⊆ R(q) as the workspace occupancy for only links L. A
traveler may use the knowledge that an object must be in contact with R(q,Lcontact),
as opposed to anywhere onR(q).

The BTP for contact planning has a few defining characteristics that warrant atten-
tion. First, the edges of this BTP are highly correlated, because a single workspace
obstacle can block multiple C-space edges. Hence even an independent prior over
workspace occupancy translates to correlation amongst edges. The robot exploits this to
gain information about untraversed edges. Second, it’s unclear how one obtains priors.
A uniform random distribution is certainly not realistic. A finite dataset of worlds has
realizability issues on account of continuous observations. Designing parametric dis-
tributions that capture all likely worlds is difficult. Finally, a manually-specified prior
might be inaccurate. How should the robot detect and compensate for this in a princi-
pled manner? We propose solutions that deal with these issues in the next section.

4 Belief Representations for Contact-based Planning

An agent maintains a belief over workspace occupancy Wobs, which we refer to as a
world φ ∈ Φ and represent it using a voxel grid. The belief at timestep t is repre-
sented as bt(φ). Since each voxel can be either occupied or free, the set of worlds is
Φ = {0, 1}N where N is the number of voxels, thus explicitly enumerating all possi-
ble worlds is infeasible. We follow two approaches for maintaining the belief. The first
is a non-parametric particle filter where a set of candidate hypotheses are maintained
and possibly ruled out. The second is an approach that adds new hypotheses that are
consistent with measurements. We also motivate and discuss mixing these methods.

Approach 1: Manifold Particle Filter (MPF) A particle filter is a non-parametric
Bayes filter that represents belief bt(φ) as a finite set of possible candidate worlds
Φt = {φ1t , φ2t , . . . } with associated weights {µ1

t , µ
2
t , . . . }. In this paper, the particles

model objects with known geometry but with varying positions. Since in the BTP ob-
jects are stationary, the process model is static, and particles are only updated due to the
measurement model, thus we only update the particle weights and do not resample.

A known issue with particle filters is poor performance when the proposal distribu-
tion does not match the target distribution. A conventional particle filter performs mea-
surement updates via importance sampling: sampling from φit−1 ∼ bt−1 and weighing
by µit = P (ot|φit). In the case of a highly discriminative measurement such as a con-
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Algorithm 1: Manifold Particle Filter
input : particles Φt−1, e, ot = (xt, ηt), Lcontact

output: particles Φt

1 Φt ← ∅
2 for φi

t−1 ∈ Φt−1 do
3 for d ∈ [0, ηt) do
4 q = e(d)

5 φi
t ← φi

t−1

6 µi
t ← P (R(q) ∩Wobs = ∅|φt)µ

i
t−1

7 if xt = 0 then
8 WCM ←R(e(ηt),Lcontact))
9 φi

t ← PROJECT (φi
t−1,WCM )

10 µi
t ← KERNELDENSITYESTIMATE (Φt−1, φ

i
t)

Fig. 3: Manifold Particle Filter: The initial particles Φ0 model configurations of the true
obstacle before the robot moves (top). A collision during a motion causes particles to
be resampled on the contact manifold (middle). Subsequent free space motions sweep
through and eliminate some particles (bottom).

tact, the target distribution represents a thin manifold of possible object configurations
which does not match the proposal bt−1, causing particle starvation.

We therefore adopt the strategy used in the Manifold Particle Filter (MPF) [7], de-
picted in Fig. 3 and detailed in Algorithm 1. For robot motions through free space
where no collision is observed the MPF updates using importance sampling as in a
conventional particle filter (Line 6). With our static process model this is equivalent to
eliminating particles inconsistent with the new known free space.

When a collision is observed the MPF instead uses the contact manifold as the pro-
posal distribution, sampling particles from obstacle configurations in contact with the
robot arm (Line 10). The importance weights are then calculated using P (φit|bit−1).
bit−1 is approximated by applying a Gaussian kernel to Φt−1, called a Kernel Density
Estimate. We implement the Implicit Manifold Particle Filter [7] which approximates
the proposal distribution by projecting the prior particles onto the contact manifold.
Though computationally efficient, this projection does introduce significant bias, as the
previous estimate appears both in the sampling and the re-weighting. In our implemen-
tation we translate each particle the minimum distance so that it overlaps with the robot
in the collision configuration. This choice of projection can generate new particles that
are inconsistent with past contact observations. While a more sophisticated projection
operation is of interest, it is beyond the scope of this work.

MPF performs well when given an accurate initialization b0, but for robots in the
real world it is often unrealistic to assume the distribution over obstacles is known
accurately. One such instance is when b0 clusters the correct object far from the correct
position. Another common and more difficult instance is when the particles model the
incorrect object geometry, so no particle is capable of representing the true world.
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Algorithm 2: Collision Hypothesis Set
input : CHSs K, Known Freespace WF ,

e, ot = (xt, ηt),Lcontact

output: K,WF

1 for d ∈ [0, ηt) do
2 q = e(d)
3 WF ←WF ∪R(q)
4 if xt = 0 then
5 K.append(R(e(η),Lcontact))

6 for κi ∈ K do
7 κi ← κi \WF

Fig. 4: CHS: The robot initially plans a motion optimistic about unknown space (top).
A motion sweeps out free space (blue) and a collision generates a CHS (middle). Future
free space motion sweeps out more free space, potentially shrinking CHSs (bottom).

Approach 2: Collision Hypothesis Sets (CHS) To overcome the reliance on an accu-
rate prior we can adopt the Collision Hypothesis Set (CHS) [8] belief. A single CHS
κi ∈ W is the complete set of voxels that could explain observed collision i. The CHS
belief builds up a set K = {κ1, κ2, . . . } to explain all measurements.

Fig. 4 depicts the CHS update described in Algorithm 2. As the robot moves without
collision, the swept volume of the motion is marked as known free space in the voxel
grid (Line 3). When a collision is encountered during robot motion a CHS is added
containing voxels of the links possibly in collision (Line 5). The known free space is
then removed from all CHSs (Line 7).
K induce a belief P (x) as follows:

P (x(e) = 0|κi) =
|We ∩ κi|
|κi|

effect of single CHS (3)

P (x(e) = 1|K) =
∏
i

1− P (x(e) = 0|κi) effect of all CHSs (4)

where (3) captures the optimistic assumption that each κ generates exactly one occupied
voxel, and (4) comes from the assumption that each κ is independent. Note that the CHS
method never mark a valid edge as invalid. P (x(e) = 1) = 0 (i.e. e is marked invalid)
only if We completely contains a κ. By construction a κ must contain an occupied
voxel. Additionally note that when an invalid edge is attempted, the new κ created will
cause P (x(e) = 1) = 0.

The CHS method is optimistic about free space. Sampling φ ∼ K yields worlds
with only a few occupied voxels, not representative of realistic scenarios, though as a
single voxel still blocks an edge the edge validities xmay still match realistic scenarios.
However, while a particle filter with good initialization begins with a good estimate of
P (x), it may take many collisions to build up K sufficiently.
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Approach 3: Mixture of Experts We would like to benefit from an MPF prior, but also
recover in the case of a bad initialization. In real world examples, it is unknown if an
initial b0 for the MPF is accurate a priori. Intuitively, online adaptation can be achieved
by comparing particles Φt to Φ0. If measurement updates cause particles to congregate
in regions predicted by particles Φ0 then the prior likely provides a reasonable model of
the world. If instead particles update to unlikely regions or disappear entirely the prior
was likely not accurate, and we would like to fall back to the CHS belief.

To achieve this behavior we mix the CHS belief bCHSt and MPF belief bMPF
t using

weights βt = (βMPF
t , βCHSt ) to get the following:

bt(φ) =
βMPF
t bMPF

t (φ) + βCHSt bCHSt (φ)

βMPF
t + βCHSt

(5)

To set βMPF
t , we consider three terms of interest: Φt is the current set of particles in

the MPF, bMPF
0 is the initial MPF belief before any observations, and bU is a uniform

belief over a support set of volume V . The weights are set as:

βCHSt = 1 (6)

βMPF
t = Eφ∼bMPF

t

[P (φ|bMPF
0 )

P (φ|bU )

]
(7)

=
∑
φi
t∈Φt

µit
P (φit|bMPF

0 )

P (φit|bU )
=
∑
φi
t∈Φt

µit
bMPF
0 (φit)

1/V
= V

∑
φi
t∈Φt

µitb
MPF
0 (φit) (8)

where V is a tuning parameter. In other words, we set the weight of the MPF belief
βMPF
t by iterating over all particles and doing a weighted sum of the likelihood of the

particle under the original MPF belief bMPF
0 . The weight βCHSt is set to be constant.

The rationale for setting βMPF
t in this way is to measure how much the current MPF

belief bMPF
t has deviated from the original belief bMPF

0 . A large deviation indicates
that the prior was not a good estimate and we should instead trust CHS. When the MPF
prior bMPF

0 is accurate, there are at least some particles that have both a high weight
µit and high likelihood under the original prior bMPF

0 (φit). Hence βMPF
t is high. The

deviation w.r.t bMPF
0 is measured relative to a uniform distribution with volume V .

When the prior is inaccurate, particles may still have a high weight µit. However
bMPF
0 (φit) will be small since the particles have moved significantly, thus resulting in a

small βMPF
t .

5 Strategies for Solving the BTP

Since we established that BTP is NP-complete [40], we explore a number of efficient
approximation strategies to solve the problem, by drawing from heuristics used in the
related Canadian Traveler’s Problem (CTP) [33] (Section 5.2). We also propose a new
heuristic (Section 5.1) that (to the best of our knowledge) has not been applied to a CTP.
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5.1 Collision Measure (CM)

This heuristic balances exploration (assuming unexplored edges are free) with exploita-
tion (penalizing edges with low validity likelihoods). The agent is at a vertex vt and
decides which edge et from the set of outgoing edges N (vt) to traverse as follows:

Ĝ = (V, E , w(e)− α logP (x(e) = 1|ψt))
et =

{
e ∈ N (vt)

∣∣∣ e ∈ SHORTESTPATH(Ĝ, vt, vg))
} (9)

Here Ĝ is an optimistic graph created by removing all edges that are invalid with
probability 1 given observation history ψt. Further, the weights are penalized by log-
probability. Log-probability is chosen because for a path ξ, the log-probability is ad-
ditive over edges assuming independence, i.e., logP (x(ξ)) =

∑
e∈ξ logP (x(e)). A

known blocked edge (P (x(e) = 1|ψ) = 0) yields a weight of ∞, and a known free
edge (P (x(e) = 1|ψ) = 1) yields w(e). At each iteration the CM strategy finds the
shortest path over Ĝ and attempts the first edge.

We provide the outline of theoretical justification for using this heuristic, (see sup-
plementary material [40] for a detailed discussion). We first map BTP to a Bayesian
search [41]. In Bayesian search, an agent repeatedly inspects a series of n boxes until
an item is found. The goal is to minimize the expected cost of searching the box. A
greedy policy selects the box with the largest ratio of probability of containing an ob-
ject over the cost of searching the box pi

ci
. Dor et al. [42](Theorem 4.1) proved that a

greedy policy has cost at most 4 times optimal cost.
We modify BTP as follows - the agent picks a path, travels along it till an obstacle

is encountered, backtracks to the start and tries another path. This is a Bayesian search
problem. A greedy policy is equivalent to a more general notion of the collision measure
policy that can solve the following optimization

et =

{
e ∈ N (vt)

∣∣∣∣∣ e ∈ arg min
ξ

w(ξ)

P (x(ξ) = 1|ψt)

}
(10)

This has a bound of 4 w.r.t the optimal policy in the modified problem, and a bound of
8 w.r.t the original BTP problem.

The optimization in (10) is intractable as P (x(ξ) = 1) is not additive. However
we can instead solve arg minξ w(ξ)−α logP (x(ξ) = 1|ψt) where the cost function is
additive (as log-probabilities are additive) and decomposes nicely. We show in supple-
mentary material [40] that this is a suitable approximation of the near-optimal policy.
Furthermore, Collision Measure is complete on the modified BTP even when using the
CHS approximation of the belief. Using CHS there are finite ξ, each attempt either
reaches a goal or marks an edge as invalid, and no valid edge will ever be eliminated.

5.2 Baselines

To benchmark our proposed Collision Measure strategy we consider three categories
of strategies commonly used in POMDPs – approaches that approximate the optimal
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Fig. 5: Pitfalls for various strategies for a 2D BTP problems.

expected cost-to-go of an action, also referred to as Q-value, with heuristics, approaches
that use simulation to evaluate actions, and approaches that plan to gather information.
For more details, we refer the reader to [40].

Optimism in the Face of Uncertainty (OFU) [43]: Find the shortest path on the
optimistic graph and move along the edge on it.

Thompson Sampling (TS) [44]: Sample a world from the current belief, find the
shortest path in that world, and move along the edge on it.

QMDP [44]: Given current belief, move along the edge with the least expected cost-
to-go assuming the world is revealed at the next timestep.

Most Common Best Edge (MCBE): Given the current belief, move along the edge
that has the highest probability of belonging to a shortest path.

Optimistic Rollout (ORO) [33]: Sample a world from the current belief, simulate
moving along an edge and rollout with an optimistic policy. Move along the edge with
best Q-value.

Upper Confidence Tree (UCT) [35]: Conduct a Monte-Carlo Tree Search [45]
where nodes are belief states and actions are edges to move along. The value of each
belief is averaged over successors. To select actions for expansion during search, Upper
Confidence Bound (UCB) is used.

Interleaving Planning and Control [8]: Alternate between a global RRT planner
and greedy local controller to plan a path to the goal through C with the least probability
of collision. Note this is a strategy for the planning with contact feedback problem, but
does not directly map to a BTP.

5.3 Pitfalls for Heuristic Strategies

Since all strategies considered are heuristics, it is important to recognize the pitfalls that
they face. We illustrate these in Fig. 5. OFU is easily tricked into exploring cul-de-sacs
that do not lead to the goal (Fig. 5(a)). A Bayes-aware heuristic would be able to predict
the cul-de-saac and backtrack earlier. ORO offers significant improvement over OFU as
it simulates executing OFU. However simply increasing the density of the grid yields
a BTP where all neighbors of vs fall into a cul-de-sac (Fig. 5(b)). ORO is not able to
discover the non-myopic sequence of actions.

QMDP and MCBE avoid such optimistic pitfalls. However they rely on uncertainty
disappearing after performing the first action. This can lead to infinite loops as shown
in Fig. 5(c). The belief is such that the solid edge is known to be feasible while only
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Fig. 6: Refrigerator - Victor moving to place an object inside a refrigerator.

one of dotted edges is feasible. When the agent is at v1, it wishes to move to v2 and
vice-versa.

CM is also susceptible to pitfalls because it treats P (x) independently. Fig. 5(d)
shows an example where the solid edge is feasible while only one of the dotted edges is
feasible. The only feasible path is the longer path with weight w2. CM will choose the
lower path as long as 2w1 − α log 0.5 < w2.

However, of the four traps, the CM trap is the least concerning. In Fig. 5(d), the
suboptimality of CM is at most 4w1+w2

w2
which is small as w2 � w1. Moreover, an

appropriate α would lead to the optimal answer. This suggest a sweep over α parameter
in practice would help prevent such pitfalls.

6 Experiments

We performed experiments on simulated and real worlds for the “Victor” robot’s right
arm, a KUKA iiwa 7DOF arm that provides joint torque feedback.

Implementation Details: W is represented by a 200x200x200 voxel grid imple-
mented on the GPU using GPUVoxels [46]. Computing P (x(e)|ψ) involves the expen-
sive computation of swept volumes We, approximated by discretizing the configura-
tions with a distance of 0.02 rad. For efficiency we lazily compute and cache We.

We constructed G in the R7 configuration space corresponding to the right arm of the
Victor robot with 10000 vertices generated from the 7D Halton sequence and with edges
connecting vertices within 1.8 rad, yielding |E| = 259146. All strategies considered in
Section 5 involve repeated shortest path queries over subgraphs of G with modified edge
weights. Although any best-first search method is sufficient, we performed all shortest
path queries using LazySP [12] to minimize the number of expensive edge-evaluation
operations. All trials were conducted on an i7-7700K with a NVidia-1080Ti GPU.

Scenarios We considered 2 real robot scenarios - Refrigerator and RealTable.
In Refrigerator, Victor must reach into a refrigerator from behind (Fig. 6). In
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Fig. 7: RealTable - Victor moving from below to above a table.

RealTable, Victor must move from below the table to above (Fig. 7). We also con-
sider 2 simulated robot scenarios (Fig. 8) - Bookshelf and Box. In Box, Victor must
reach into a box on a table where the back of the box unknown (which is a typical sce-
nario due to sensor occlusion). In Bookshelf, Victor must reach into a bookshelf at
a height above it.

We consider CHS, MPF with 100 particles, and MoE models of the belief. The
MPF requires an initial belief bMPF

0 , which can have drastic effects on the behavior of
strategies.

We consider three levels of difficulties based on how the prior bMPF
0 is chosen.

– Easy: true unknown obstacles with offset ∼ N (0, 0.1)
– Medium: true unknown obstacles with offset ∼ N (0.1, 0.4)
– Hard: a chair in the corner, with no knowledge of the relevant obstacles

In the real robot scenarios the Easy and Medium particle priors were manually
generated, approximated the shape of the true obstacle. In the Refrigerator sce-
nario Wobs is populated using a Kinect sensor mounted on Victor’s head. In the
RealTable scenario Victor is wearing a blindfold.

We compare across the three beliefs proposed in Section 4 and all strategies from
Section 5, except UCT which was not tested due to excessive computational time. For
the stochastic TS strategy we average across 10 trials. We test our proposed CM with
α = 1 and α = 10. We also compare against the (non-BTP) baseline proposed in [8]
which interleaves an RRT with a local controller to find low cost paths through C.

Results: Select results for the Bookshelf scenario are shown in Fig. 9 with full
results for all scenarios shown in [40]. For the non-BTP baseline [8] applied to the
Bookshelf scenario we observe only 2 out of 20 trials succeeded within a 15 minute
time limit.
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Fig. 8: Simulation scenarios. Here CM is used in all scenarios. Top left: Easy setting of
Box using CHS. Top right: Easy setting of Box using MPF. Bottom left: Hard setting
of Box using MoE. Bottom right: Hard setting of Bookshelf using CHS.

Fig. 9: Results of applying various belief strategies and policies to the Bookshelf
BTP. Our proposed MoE+CM is consistently fast and solves the BTP with low cost.

Constraining motion to a roadmap yields a manageable action space and depth for
the search for the strategies proposed. Furthermore, the roadmap allows reuse of the
computationally expensive quantity P (x(e)|ψ) within a single SHORTESTPATH query,
and reuse of the edge swept volume We between queries. Compared to the previous
baseline [8], we observe a significant improvement using the BTP framework.

Furthermore, we observe three key takeaways from the experiments.

1. CM performs well. CM consistently outperforms OFU, providing a lower cost pol-
icy in 19/24 experiments across scenarios, beliefs, and prior hardness. For our pro-
posed MoE belief, CM outperforms OFU in 11/11 experiments, on average yielding
37% the cost. Compared to MCBE, CM yields a lower cost in 17/26 trials. In ad-
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dition, averaged across all trials the planning time of CM is 15s, while MCBE is
217s.

2. MPF with a good prior performs well but breaks down when poorly initialized.
MPF with the Easy prior outperforms CHS in 21/22 trials across all strategies and
scenarios. MPF with the Hard prior only outperforms CHS in 1/22 trials, causing
strategies to fail in half of trials.

3. MoE costs are approximately the minimum of MPF and CHS when using CM.

7 Conclusions

We proposed the Blindfolded Traveler’s Problem as a class of problems in planning
under uncertainty. We showed that contact-based planning is an instance of BTP. We
examined various strategies for approximating the belief over the workspace obstacles
based on contact feedback and argue for a Mixture of Experts that work well with
and without correct initialization. We also examined various policies for approximately
solving the BTP and propose a new policy, Collision Measure, that is both efficient and
has theoretical guarantees.

There are several possibilities for future work. As currently modeled the traveler is
constrained to G which, for high dimensional C, possess long edges for a practically
sized |V|. Long edges may result in significant backtracking after a collision. Potential
alternatives would be to dynamically alter G by adding vertices and edges after a colli-
sion to avoid such backtracking. Another direction is to examine alternate schemes for
setting βMPF based on f−divergence between bMPF

t and the original belief bMPF
0 .
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Appendix for “The Blindfolded Robot :
A Bayesian Approach to Planning with Contact

Feedback”

A Analysis of BTP

A.1 Mapping the Problem to a POMDP

We map BTP problem to a Partially Observable Markov Decision Process (POMDP)
specified by the following tuple 〈S,A, T, C,O, Z〉 which we define as follows.

The state s ∈ S is the tuple s = (v, x, η) where v ∈ V is the current location of the
traveler on the graph G, x is the binary vector of edge validities and η is a vector of edge
blockages. The state is partially observable, i.e. v is observable but the rest is latent.

Given state s ∈ S, the action a ∈ A(s) is any edge e ∈ E that can be traversed,
i.e., whose parent is v. Let the result of the attempt be (v′, c) = Γ (v, e, x, η). The
transition function T (s, a, s′) is deterministic, i.e. s′ = (v′, x, η). Similarly, the one
step cost is C(s, a) = c. The observation o ∈ O is the tuple o = (x(e), η(e)). Hence
the observation model Z(s′, a, o) is deterministic.

Since the state is partially observable, the POMDP is viewed as a MDP over belief
b. A POMDP policy π(b) maps b to actions. The optimal policy π∗ accumulates the
minimum cost in expectation. The Q-value of action a in a belief state is the expected
total cost of taking a and subsequently following π∗, i.e.

Q(b, a) = Es∼b [C(s, a)] + Eb′∼P (.|b,a)
[
V π
∗
(b′)
]
. (11)

A.2 Computational Complexity

In BTP, the belief b is over a continuous space S due to blockages η, i.e. the exact belief
is infinite dimensional. This necessitates approximation based approaches that rely on
non-parametric sample-based belief representations. For the proofs in this section we
consider a discrete/simplified BTP with discrete b by fixing η(e) = 1. Furthermore, we
examine the BTP decision problem instead of the optimally problem.

We follow an analysis parallel to Lim et al. [37] to show that the BTP decision
problem is NP-complete by showing it is both in NP and NP-Hard.

We first prove that the BTP decision problem is in NP. For this result we consider
an explicit description of the input P , that is P specifies probability of each possible
world. Note that P could be exponentially larger than |E|. In this case BTP would still
be in NP, though P (part of the input) would be so large as to make this claim of limited
use.

We also prove that BTP is NP-hard by reduction from the Optimal Decision Tree
(ODT) problem. The ODT problem is as follows. We have a finite set of hypotheses
H = (h1, h2, . . . , hn) and a finite set of tests T = (t1, t2, . . . , tm). A test ti leads to
an outcome oi ∈ {0, 1} depending on the latent hypothesis h∗ ∈ H. The objective is
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to find a policy that identifies h∗ with the least number of tests when h∗ is uniformly
distributed. The policy is a binary decision tree where nodes are tests, edges branch on
outcomes and the terminal nodes stores the latent object h∗ ∈ H. The decision version
of the problem, which asks if a policy with expected cost of less than or equal to w is
NP-complete [47].

Theorem 1. We define the decision version of Blindfolded Traveler Problem as the
question of whether there is a policy with expected cost less than or equal w. The
decision version of discrete/simplified BTP is NP-complete.

Proof. The solution of BTP can be represented as a policy tree. Note that nodes and
edges in this policy tree are distinct from nodes and edges in the graph G of the BTP.
Nodes of this policy tree represent testing an unevaluated edge in G. A node in the policy
tree may even represent traversing several known edges in G to reach the unknown edge
in G. Each edge of the policy tree is an observation o received upon performing an edge.
A BTP is solved by traversing the policy tree till the leaf node is reached, i.e. evaluating
unknown edges, receiveing observations until the goal is reached.

The optimal policy tree is polynomial size in the input of BTP. Consider that each
edge in the policy tree corresponds to an action (or actions) in the BTP that will de-
termine the validity of one edge in G, thus the policy tree can be at most |E| deep.
Furthermore, there can be at most one unique path through the policy tree for each hy-
pothesis world in P . Since we assume each hypothesis world is explicitly represented
in P , the optimal policy tree is polynomial in |G| and |P|.

Finally, computing the expected cost of a policy is simply a weighted sum for all
paths through the policy tree. Hence the BTP decision problem is in NP.

We now show that ODT is polynomial time reducible to BTP and thus BTP is NP-
hard. Given an instance of ODT(H, T ), we consider an instance of BTP 〈G,P, vs, vg〉
as follows. Consider the BTP problem shown in Fig. 10. The cluster of edges {e1, . . . , em}
correspond to the tests {t1, . . . , tm}. Note again that the blockages for all tests is fixed
at η(e) = 1. An agent attempting to traverse the edge ej will either be successful and
reach the vertex vj , or unsuccessful and the agent will return back to vs. The cluster of
edges {em+1, . . . , em+n} has only one valid edge correspond to identifying the correct
hypothesis from (h1, h2, . . . , hn). The weights of the left cluster of edges {e1, . . . , em}
is 1 and the right cluster of edges is 2m.

We set up the prior P to be uniform over a set of candidate vectors xi, each of which
corresponds to a hi. For the latent hypothesis hi, we set the edge validities x(ej) = oj
for j = {1, . . . ,m}, i.e. the outcome of the tests for hi. For the other cluster, we set
x(em+i) = 1 and all other edges to 0, i.e., x(ej) = 0 for j = {m, . . . ,m + n}, j 6= i.
We now argue that expected cost of ODT instance is less than or equal to some value w
iff cost of BTP instance is less than or equal to 2w + 2m.

First, if the cost of the ODT is ≤ w then the agent can traverse the left cluster using
the policy tree of ODT and identify the correct hypothesis h∗ with cost≤ 2w. The agent
then goes to vg using the valid edge incurring 2m. Hence the total cost of the BTP is
≤ 2w + 2m.

Next, we prove the converse that if the cost of the BTP is ≤ 2w+ 2m, then the cost
of the ODT is ≤ w. Note that w > m is vacuous because ODT is clearly solved by at
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Fig. 10: Reduction from Optimal Decision Tree problem

worst evaluating all tests, which would incur cost m. Thus we consider w ≤ m which
implies the cost of the BTP is ≤ 4m. First consider that if an edge to vg is attempted
before identifying the correct hypothesis, there will be at least two equally likely paths
with cost 2m and so the expected cost of any policy that tries to go directly to the goal is
≥ 4m. Hence the agent will try to identify the true hypothesis before going to the target.
If the agent solves the BTP by identifying the correct hypothesis with cost ≤ 2w + 2m
then it also has a policy to solve the ODT with cost w.

Thus ODT is reducible to BTP in polynomial time, and since ODT is known to
be NP-hard then BTP is also NP-hard. Since we also showed BTP is in NP, BTP is
therefore NP-complete.

Note that if P is not represented explicitly (e.g. not by a matrix of size |E| by the
number of hypothesis worlds), but with factored representations, then the problem may
no longer be in NP. Also if we further consider the location of the contact (η), the size
of the hypothesis space is now continuous and this analysis no longer holds.

A.3 Relation to the Bayesian Canadian Traveler’s Problem

The BTP is closely related to the Canadian Traveler’s Problem (CTP) [48]. In graph
search an agent executes a polity to reach a goal with the minimum expected cost.
Consider the k-lookahead graph search problem, where an agent only observes the true
validity of edges within k steps of its location. The Shortest Path Problem over known
graphs in an instance of∞-lookahead. The CTP is a 1-lookahead instance. For k ≥ 1
an agent knows the state of adjacent edges and therefore will never attempt an invalid
edge. In BTP, with k = 0, an agent might attempt invalid edges, which is the reason for
the more complicated cost formulation.

In the original CTP x(e) are independent. In the more general Bayesian CTP (BTCP) [37]
x(e) are correlated through beliefs of underlying worlds φ rather than beliefs directly
over x. As defined, the BTP is analogous to the Bayesian CTP.

B Strategies for Solving the BTP

Since we established that BTP is a hard problem (Section A.2), we explore a number of
efficient approximation strategies to solve it. We organize these approaches into three
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categories – approaches that approximate the Q-value with heuristics, approaches that
use simulation to evaluate actions and approaches that plan to gather information. Note
that while the latter approaches have theoretical guarantees, they come at the cost of
computational complexity.

For all of these strategies, we assume that the agent is current at a vertex vt and must
decide which edge et from the set of outgoing edges N (vt) to traverse. The history of
observations is encoded in ψt.

B.1 Heuristic Estimates of Q-values

One class of approaches try to approximate optimal Q-value Q∗(b, a) with an estimate
Q̂(b, a). These approximations are motivated by different relaxations of the original
problem. Since these approximations are myopic, i.e., only consider the instantaneous
belief, they do not offer any performance guarantees in general. However, they are effi-
cient to compute and perform quite well in practice.

Optimism in the Face of Uncertainty (OFU) A common approach for planning under
uncertainty is to be optimistic [43], i.e., pick a world from the plausible set of worlds
that leads to the lowest action value. The rationale is that either the assumption is correct
and the agent does the best it can do, or the possibility is eliminated and the search space
is reduced. This heuristic is commonly used in navigation [4, 26] as well as for solving
CTP [49].

Formally, the approximation is Q̂(b, a) ≈ mins,b(s)>0Q(s, a). An optimistic policy
selects the best action πOFU = arg min

a
Q̂(b, a). Mapping this back to the BTP, the

agent chooses edge et as follows:

Ĝ = (V, E \ {e | P (x(e) = 0|ψ) = 1} ,W)

et =
{
e ∈ N (vt)

∣∣∣ e ∈ SHORTESTPATH(Ĝ, vt, vg))
} (12)

Here Ĝ is the optimistic graph created by removing all edges that are invalid with
probability 1. The agent invokes a search subroutine SHORTESTPATH(Ĝ, vt, vg) to com-
pute the shortest path from current vertex vt to goal vg . It then looks at which of the
outgoing edges N (vt) belongs to the shortest path and takes that.

We can bound the sub-optimality of the optimistic policy if we alter it to backtrack
whenever the shortest path is in collision. Let this policy be πOFU2. This results in the
following iterative policy

1. At iteration i, the agent computes shortest path from start to goal on the optimistic
graph, i.e. ξi = SHORTESTPATH(Ĝi, vs, vg)

2. It moves along ξt till it either reaches the goal or hits a blocked edge x(e) = 0.
3. If it hits a blocked edge, it back tracks to start vs and repeats.

Then the following theorem is true
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Theorem 2. Given a configuration (x, η), let w∗ be the length of the shortest feasible
path between vs and vg , and K be the number of shorter paths that are infeasible. For
all such configurations, the cost of the optimistic backtracking policy πOFU2 is upper
bounded by

c(πOFU2(x, η)) ≤ 2Kw∗ (13)

Proof. The optimistic backtracking policy will attempt the shortest path from vs on Ĝ,
which must be no longer than the shortest path on G. Each attempted path therefore
incurs at most a cost of 2w∗. Since each attempt either reaches the goal or invalidates a
path shorter than w∗, there will be at most K attempts.

Interestingly, if we changed the problem to the following:

1. The agent has to reach the goal via the shortest path from start
2. The agent is allowed to backtrack for free

this problem becomes equivalent to the shortest path planning problem on expensive
graphs [12]. πOFU2 is then equivalent to LAZYSP [12] which has been shown to be
optimal [50].

Thompson Sampling (TS) This is a commonly used heuristic for Bayesian Multi-
armed Bandit (MAB) problem based on the idea of randomized probability match-
ing [51]. At every decision step, it samples a model from a posterior and selects the
optimal action for that model. Hence action selection probability is matched to the pos-
terior of actions being optimal. In recent literature, Thompson Sampling has shown to
be empirically successful [52], theoretically sound [53] and applicable beyond MAB to
RL [54].

Formally, the TS policy is πTS = arg min
a

Q∗(s, a) where s ∼ b. Mapping this

back to BTP, the agent chooses edge et as follows:

x̂ ∼ P (x|ψt), Ĝ = (V, E \ {e | x̂(e) = 0} ,W)

et =
{
e ∈ N (vt)

∣∣∣ e ∈ SHORTESTPATH(Ĝ, vt, vg))
} (14)

Here Ĝ is the sampled valid graph from the posterior on which the agent plans the
shortest path and takes a step along it. Thompson sampling usually provides a bound
for MAB w.r.t Bayesian regret, i.e., the expected regret under the prior [55]. These
bounds are meaningful for repeated trials on the same world, which is not the case for
BTP.

QMDP This is one of the most commonly used heuristics for POMDPs [44]. It assumes
that all uncertainty will disappear at the next timestep. Hence the optimal action is the
one with the least expected value based on the current uncertainty.
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Formally, the approximation is Q̂(b, a) ≈ Es∼b [Q∗(s, a)] and the policy is πQMDP =
arg min

a
Q̂(b, a). Mapping this back to BTP, the agent chooses edge et as follows:

et = arg min
e∈N (vt)

E(x,η)∼P (·|ψt) [c+ w(SHORTESTPATH(G(x), v′, vg))]

where (v′, c) = Γ (vt, e, x, η) and G(x) = (V, E \ {e | x(e) = 0} ,W)
(15)

Here we sample a set of worlds (x, η) ∼ P (·|ψt). For each candidate edge e ∈ N (vt),
we simulate moving along the edge (which may or may not result in a success) and
subsequently plan the shortest path on the revealed world.

It’s straightforward to see QMDP lowerbounds the optimal value Q̂(b, a) ≤ Q∗(b, a).
There are two known drawbacks. Firstly, the policy never acts to gain information be-
cause it ignores potential observations. Secondly, and perhaps more relevant to BTP, it’s
susceptible to a clairvoyance trap.

Most Common Best Edge (MCBE) This is a further relaxation of the QMDP heuristic.
Note that QMDP calls SHORTESTPATH(·) a total of kN times, where k is the degree of
the graph andN is the number of samples. We can reduce this toN if the agent chooses
action based on the current belief, without first simulating an action.

Formally, the policy is πMCBE = arg max
a

Es∼b
[
I(a ∈ arg min

a′
Q∗(s, a′))

]
. Map-

ping this back to BTP, the agent chooses edge et as follows:

G(x) = (V, E \ {e | x(e) = 0} ,W)

et = arg max
e∈N (vt)

E(x,η)∼P (·|ψt) [I(e ∈ SHORTESTPATH(G(x), vt, vg))] (16)

Here we sample a set of worlds (x, η) ∼ P (·|ψt), find the shortest path for each world
and store the first edge along the path. The agent moves along the most common edge.

MCBE and QMDP do not necessarily agree on the same actions. One can construct
examples where MCBE has a very high QMDP value because the action maybe quite
suboptimal for worlds for which it is not on the shortest path. MCBE too is susceptible
to the clairvoyance trap.

Collision Measure (CM) A drawback of the OFU policy is that it does not reason about
the likelihood of a path to be valid. This can lead to excessive exploration of implausible
paths. Augmenting the originalW with a term penalizing small P (x) retains the graph
substructure needed for efficient search while hedging against likely blocked edges.
We examine weight augmentation using the collision measure proposed in [14] for fast
motion planning with C-space beliefs.

This heuristic balances exploration (assuming unexplored edges are free) with ex-
ploitation (penalizing edges with low validity likelihoods). The agent is at a vertex vt
and decides which edge et from the set of outgoing edgesN (vt) to traverse as follows:

Ĝ = (V, E , w(e)− α logP (x(e) = 1|ψt))
et =

{
e ∈ N (vt)

∣∣∣ e ∈ SHORTESTPATH(Ĝ, vt, vg))
} (17)
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Here Ĝ is an optimistic graph created by removing all edges that are invalid with
probability 1 given observation history ψt. Further, the weights are penalized by log-
probability. Log-probability is chosen because for a path ξ, the log-probability is ad-
ditive over edges assuming independence, i.e., logP (x(ξ)) =

∑
e∈ξ logP (x(e)). A

known blocked edge (P (x(e) = 1|ψ) = 0) yields a weight of ∞, and a known free
edge (P (x(e) = 1|ψ) = 1) yields w(e).

We provide theoertical justification behind such a heuristic. We begin by mapping
BTP to a Bayesian Search [41] problem. Let Ξ = (ξ1, ξ2, . . . , ξn) be the set of simple
paths from vs to vg . The probability of edge validity P (x) maps to a joint probability
P ((ξ1, ξ2, . . . , ξn)) of paths being valid. For each path ξk, we assign a cost twice the
length of the path ci = 2w(ξi). We now describe a sequential game of at most n rounds.
In each round the agent attempts to traverse a path ξk. If the path is valid, it reaches the
goal and receives a cost of ck and the game terminates. Else, it receives a cost of ck,
remains at the start and the game continues.

Let σ be a sequence of attempting paths, i.e. a particular permutation of {1, · · · , n}.
Let E [c(σ)] be the expected cost of a sequence. The optimal sequence σ∗ has minimal
expected cost, i.e. E [c(σ∗)] ≤ E [c(σ)] for all sequences σ∗.

Let σg be a sequence corresponding to a greedy policy that selects the path with the
maximum posterior to cost ratio. Formally, this rule is defined as follows.

σg(i+ 1) = arg max
j

P (ξj = 1|ξσg(1) = 0, ξσg(2) = 0, · · · , ξσg(i) = 0)

c(ξj)
(18)

where the numerator is the posterior probability of a path given the observations seen
thus far and the denominator is cost of the path.

Dor et al. [42](Theorem 4.1) proved that greedy has an optimality bound of 4

Theorem 3. Given the following conditions on the game:

1. There exists at least one valid path
2. Ratio of costs are bounded supi,j

ci
cj
<∞

The performance of the greedy sequence σg is bounded

E [c(σg)] ≤ 4E [c(σ∗)] (19)

Proof. We refer the reader to Theorem 4.1 in Dor et al. [42].

We now map this result back to BTP. Note that BTP has an asymmetric cost of
attempting a path. If traversal is successful, the agent pays half price of 0.5ci, else in
the worst case pays the full price of ci for going all the way to goal and returning. Let
c̄(σ) be the cost of a sequence under these new rules. Note that the greedy policy σg

remains the same with these new rules. We can transfer the bound from Theorem 3

Corollary 1. The performance of the greedy sequence σg is bounded

E [c̄(σg)] ≤ 8E [c̄(σ̄∗)] (20)
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Proof. Let σ̄∗ be the optimal policy for the new game. Then c̄(σ̄∗) ≥ 0.5c(σ̄∗) where
the bound is tight if the optimal policy never encounters a blocked path. It’s straightfor-
ward to see that

c̄(σg) ≤ c(σg) ≤ 4c(σ∗) ≤ 4c(σ̄∗) ≤ 8c̄(σ̄∗) (21)

The greedy sequence is equivalent to a more general notion of the collision measure
policy that can solve the following optimization

πCM2 ≡
{
e ∈ N (vt)

∣∣∣∣∣ e ∈ arg min
ξ

w(ξ)

P (x(ξ) = 1|ψt)

}
(22)

The optimization in (22) is intractable as 1
P (x(ξ)=1) is not additive. We choose to ap-

proximate this with log-probability. We utilize the following inequality for p ∈ (pmin, 1]

and α ≥
1

pmin
−1

log 1
pmin

(1− log p) ≤ 1

p
≤ (1− α log p) (23)

Hence (1 − α log p) is a good family of approximators to 1
p which justifies (17) is

an approximation.

B.2 Simulation-based Policies

This class of approaches employ simulation to estimate action values. We refer to the
policy being simulated as the rollout policy π(b). Let V π(b)(s) be the cumulative cost
of the rollout policy initialized with belief b and simulated on the underlying MDP
from state s. Note that unlike Section B.1, the simulator only has access to s and
not the policy π. The simulator is thus able to provide observations o to the policy
which updates the belief used in the rollout. We can then approximate action value as
Q̂(b, a) ≈ Es∼b

[
c(s, a) + V π(b

′)(s′)
]
, where s′, b′ is the next state and belief.

The attractive aspect of these approaches is that any policy from Section B.1 can be
used as a rollout policy. For any such policy, we have the following upper bound

Q̂(b, a) ≥ Es∼b
[
c(s, a) + V π

∗
(s′)
]
≥ Q∗(b, a) (24)

If this is close to matching lower bounds from Section B.1, the value can be known
exactly. However, the simulator invokes these policies O(NTk) where N is the num-
ber of samples and T is the maximum horizon length, and k is the degree of the
graph. Each invocation requires at least one belief update and perhaps several calls
to SHORTESTPATH. Even with parallelization this is memory and computation heavy.
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Optimistic Rollout (ORO) One of the simplest rollout policies is the OFU policy
because it involves only one invocation of SHORTESTPATH. Let πOFU be the OFU
policy. Let V π

OFU(v,ψ)(x, η) be the evaluation of the policy starting from vertex v with
history ψ on an underlying graph (x, η). The agent chooses edge et as follows:

et = arg min
e∈N (vt)

E(x,η)∼P (·|ψt)

[
c+ V π

OFU(v′,ψ′)(x, η)
]

where (v′, c) = Γ (vt, e, x, η) and ψ′ = ψt ∪ (x(e), η(e))

(25)

Upper Confidence Tree (UCT) This is a state of the art algorithm from planning
under uncertainty [45] which combines the framework Monte-Carlo Tree Search with
Upper Confidence Bound (UCB) for action selection. It has successfully been used for
solving games [35, 56], POMDPs [57] and Bayesian RL [36]. The idea builds on top of
simulation based evaluation but differs on how actions are selected and how estimates
are backed up.

Each UCT rollout begins with a belief sate b0 and grows a tree where each node is a
successor b. The value of each action Q̂(b, a) is an average over successors. To expand
a given node, the search has to select one of k actions that according to the following
rule:

arg max
ai

B

√
logN(b, ai)

N(b, ai)
− Q̂(b, a) (26)

Once the search goes off the tree, it uses a roll out policy (such as πOFU) to finish the
episode. UCT has been proved to converge to the exact Q-values [33] asymptotically,
i.e. Q̂(b, a)→ Q(b, a). However there is no such guarantee on the rate of convergence.
Hence, in practice, UCT might have to do a large number of simulations.

B.3 Planning to gather information

The final class of approach we consider is where an agent plans to explicitly gather
information. One such approach is the Hedged Shortest Path under Determinization
(HSPD) [37] algorithm which was original defined for the Bayesian Canadian Trav-
eler Problem. HSPD determinizes the graph according to the most likely edge (MLE)
assumption - each edge is set to valid if the marginal posterior probability is 0.5. The
agent at every timestep plans two paths - exploitation and exploration. The exploitation
is simply the shortest path to goal. The exploration path is the shortest path that reduces
the version space to less than 0.5 fraction. The agent then takes the shorter of these paths
and travels till it encounters a blocked edge, following which it returns to the start. This
happens only a logarithmic number of times till it finds a path to goal.

This method for the BCTP has a near-optimality guarantee of 4(log δ + 1) where
δ is the minimum prior probability of an underlying world. However, there are two
concerns with the approach. Planning in belief space requires several invocations to the
Bayes filter which can be expensive. Secondly, for the case of BTP the value of δ can
be quite small as the observations are continuous. For these reasons, we chose not to
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proceed with this method although an efficient implementation for BTP would be of
great interest.
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C Full Numerical Results

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 7.3 11.6 11.6 11.6 7.3 10.1 fail
CM 10 5.0 7.3 7.3 7.3 5.0 11.6 fail
OFU 25.5 25.5 25.5 25.5 7.3 14.2 fail
ORO - - - 13.7 5.0 10.1 -

MCBE 5.0 12.2 12.2 12.2 5.0 13.2 fail
QMDP 5.0 11.9 13.4 11.9 5.0 10.1 fail

TS 7.8 7.3 11.6 21.1 5.0 13.5 fail

(a) Box Policy Cost

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard
8.5 8.9 8.3 4.1 11.7 15.1 fail
14.3 14.3 11.4 6.5 14.8 15.1 fail
2.5 2.6 3.4 2.3 4.7 3.1 fail
- - - 1779.9 1648.0 3446.8 -

46.1 186.9 224.9 173.5 47.1 38.2 fail
716.6 1782.2 3040.5 663.3 579.0 1150.9 fail
14.8 6.9 38.7 68.1 3.9 8.0 fail

(b) Box Planning Times

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 7.0 8.4 11.7 11.7 6.1 8.4 117.2
CM 10 10.0 12.3 10.1 10.1 10.0 12.1 117.2
OFU 117.4 100.4 100.4 51.8 9.1 14.5 117.2
ORO - - - 11.1 7.4 - -

MCBE 6.1 8.4 13.9 14.9 6.1 8.4 69.1
QMDP - - - 12.7 6.1 - -

TS 10.9 9.4 14.3 15.5 11.5 8.4 117.2

(c) Bookshelf Policy Cost

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard
31.2 7.8 4.0 3.0 35.9 7.8 23.7

265.2 43.3 3.8 2.7 221.8 595.5 24.1
675.9 95.6 95.0 15.0 14.8 42.4 23.9

- - - 1152.3 4333.4 - -
994.7 293.3 121.2 131.9 1080.6 280.2 1025.7

- - - 475.0 1600.5 - -
98.8 4.1 4.4 5.3 163.3 10.4 376.7

(d) Bookshelf Planning Times

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 7.6 7.1 9.3 9.3 8.2 7.6 14.7
OFU 15.1 15.1 15.3 15.2 6.7 8.2 14.7

MCBE 8.2 11.3 9.3 10.5 fail 15.4 14.7
TS 7.6 7.2 9.7 9.0 5.9 6.7 14.6

(e) RealTable Policy Cost

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 34.7 16.2 3.3 2.9 55.4 59.2 2.8
OFU 4.0 6.5 3.4 3.2 3.4 12.7 2.9

MCBE 63.4 158.7 68.5 78.4 fail 138.5 61.1
TS 7.7 2.8 2.0 1.7 22.0 33.7 3.5

(f) RealTable Planning Times

MoE CHS MPF
Easy Hard CHS Easy Hard

CM 1 8.1 6.9 8.1 7.5 fail
OFU 14.8 14.8 14.8 7.5 fail

MCBE 6.9 6.9 8.3 7.5 fail
TS 8.5 12.7 12.7 7.5 fail

(g) Refrigerator Policy Cost

MoE CHS MPF
Easy Hard CHS Easy Hard

CM 1 13.2 11.2 11.6 1.8 fail
OFU 3.3 5.0 2.8 1.7 fail

MCBE 54.6 85.8 88.7 25.0 fail
TS 11.4 5.5 3.9 1.7 fail

(h) Refrigerator Planning Times

Table 1: Results for simulated and real robot arm experiments using different belief
models and strategies. “-” indicates the GPU memory was exceeded during the trial.
Policy costs are in radians, times are in seconds. “fail” indicates the policy incorrectly
believed there was no path to the goal.
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